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Abstract: Endothelium-derived nitric oxide (NO) is the most potent endogenous
vasodilator and, by virtue of its anti-inflammatory and anti-thrombotic effects, it is an
endogenous anti-atherogenic agent. Accordingly, impairment of NO synthesis or
bioactivity may increase the risk of vascular disease. Asymmetric dimethylarginine
(ADMA) is an endogenous inhibitor of the NO synthase pathway. Plasma levels of
ADMA are increased in patients with vascular disease, or with risk factors for vascu-
lar disease. Preclinical and clinical studies indicate that ADMA may mediate the

adverse effects of traditional risk factors on endothelial vasodilator function. By
impairing endothelial function, ADMA may contribute to pulmonary or systemic
hypertension, as well as to vascular disease. Several drugs known to treat cardiovas-
cular disease also reduce plasma ADMA levels, such as angiotensin receptor antag-
onists, converting enzyme inhibitors, and insulin sensitizing agents. Plasma ADMA
may be a common mediator of endothelial dysfunction induced by vascular risk
factors. Insights into the mechanisms by which plasma ADMA is regulated may lead
to new therapeutic knowledge.
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Endothelium-derived nitric oxide is

vasoprotective

The endothelium is a diaphanous film of tissue, only
one cell layer in thickness, but it exerts powerful con-
trol over vessel tone, structure and interaction with

circulating blood elements. The endothelium main-
tains vascular homeostasis. It modulates vascular

response to hemodynamic forces, to humoral stimula-
tion, and to neuronal activation. For example, as blood
flows through a conduit artery, the diameter of the ves-
sel increases. This flow-mediated vasodilation

requires endothelial integrity. The endothelium senses
the tractive force of fluid flow, generating a hyperpo-
larizing current and releasing vasodilator substances
(such as nitric oxide: NO) that relax the underlying
vascular smooth muscle. 1,2 This endothelium-medi-
ated vasodilation accommodates the increased blood
flow by normalizing vascular shear stress.
The endothelium also modulates the response to

humoral, neuronal or paracrine transmitters such
as norepinephrine, serotonin, endothelin and vaso-
pressin.3-6 There are receptors for each of these agents

on the endothelium and on the vascular smooth
muscle. Stimulation of the vascular smooth muscle

receptors generally causes vasoconstriction, whereas
stimulation of the endothelial receptors typically
releases endothelial vasodilators such as NO. When
the endothelium is healthy, its vasodilator influence

predominates. When the endothelium is damaged or
diseased, the vasoconstrictor effect of these sub-
stances is unmasked.
Endothelium-derived NO also inhibits vascular

inflammation by suppressing the expression and

activity of adhesion molecules and chemokines. 7,8
A healthy endothelium is a veritable Teflon coating,
preventing adhesion of immune cells. NO also pre-
vents the adhesion and aggregation of platelets, by
stimulating cyclic guanosine monophosphate (cGMP)
phosphorylation of vasodilator stimulated protein and
other platelet regulatory proteins.9,10 In much the same
way, NO triggers cGMP-mediated phosphorylation of
regulatory proteins involved in the cell cycle of vascu-
lar smooth muscle cells, maintaining these cells in a
nonproliferative quiescent state.’ ,12 Whereas NO is a
survival factor for endothelial cells and enhances
endothelial cell proliferation, endothelium-derived
NO induces apoptosis of proliferating vascular
smooth muscle and inflammatory cells. 13,14
Thus, endothelium-derived NO is a vasoprotective

substance, maintaining the underlying media in a

relaxed, quiescent state, and suppressing the adher-
ence or infiltration of circulating blood elements.
Of course NO is only paradigmatic of a host of
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endothelium-derived factors that regulate vascular
homeostasis. However, it is arguably one of the most
potent. This is evidenced by the fact that, in a host
of vascular diseases, structural alterations are usually
preceded by a derangement of the nitric oxide

synthase (NOS) pathway.

Derangements of the NOS pathway

The structure and function of NOS has been well
described in the accompanying manuscripts of this
symposium. When the NOS pathway is functioning
normally, small amounts of NO are released in a

highly regulated fashion. NO causes vasodilation by
activating the intracellular enzyme soluble guanylate
cyclase, which then produces the ’second messenger’
molecule cGMP.15 In addition, NO can regulate vascu-
lar proteins by reacting with their sulfhydryl moieties
to form nitrosothiols.l6 Under normal conditions, NO
is vasoprotective. However, when the NOS pathway
becomes dysregulated, its vasoprotective functions
are lost, and the NOS pathway may even contribute
to vascular pathophysiology as described below.

Derangements of the NOS pathway may be catego-
rized as reductions in: (1) NO half-life; (2) sensitivity
to NO; (3) NOS expression; or (4) NOS activity.
Experimental evidence exists for each of these
mechanisms.

Increased vascular elaboration of superoxide anion
is an abnormality commonly associated with athero-
sclerosis and its risk factors. 17 The half-life of NO
is reduced under conditions of oxidative stress.18

Superoxide anion avidly reacts with NO to form

peroxynitrite anion, which peroxidates lipid mem-
branes and nitrosates tyrosine moieties, to impair cell
signalling and survival.’9 Conversely, anti-oxidants
lengthen NO half-life, increase the expression of
NOS, and restore endothelial vasodilator func-
tion. 20-22 The oxidative enzymes responsible for
increased oxidative stress in the vessel wall include

NAD(P)H oxidase, xanthine oxidase and mitochondr-
ial enzymes. NOS itself can generate superoxide
anion. NOS transfers electrons to oxygen to produce
superoxide anion under conditions of reduced avail-
ability of L-arginine (the NO precursor) or tetrahydro-
biopterin (a NOS cofactor) .23-27 Antioxidants may
restore the normal function of NOS by preserving
tetrahydrobiopterin.28

In later stages of atherosclerosis, reduced sensitivity
to endogenous and exogenous NO is observed, possi-
bly due to oxidative inactivation of NO and/or soluble
guanylate cyclase. Furthermore, the expression of
NOS may be reduced, possibly due to cytokine or
lipid-induced instability and/or reduced transcription
of NOS mRNA.29~3o Additionally, certain polymor-
phisms of the NOS gene may be associated with func-
tional alterations in the enzyme and vascular

disease.31 Finally, endogenous inhibitors of NOS are
responsible for endothelial vasodilator dysfunction in
many individuals with coronary and peripheral arterial
disease, and in those with risk factors, such as hyper-
cholesterolemia, hypertension, hyperhomocysteine-
mia, insulin resistance and aging. The endogenous
inhibitors are asymmetric dimethylarginine (ADMA)
and N-monomethylarginine (NMA). Because ADMA
is the predominant species (plasma levels are 10-fold
greater than those of NMA), most studies have
focused on ADMA.

ADMA is associated with vascular disease
and risk factors

Vallance and colleagues first recognized ADMA as an
endogenous inhibitor of NOS in patients with renal
failure.32 In such patients ADMA accumulates as a
result of reduced renal clearance. Dialysis reduces
plasma ADMA levels and normalizes endothelial func-
tion. Nephrologists are keenly aware that patients with
renal failure suffer from an accelerated form of athero-

sclerosis, and often succumb to coronary or cerebral
vascular disease. Could the elevation in plasma
ADMA, by limiting synthesis of vasoprotective NO,
be responsible for accelerating atherosclerosis?
We and others have demonstrated that plasma levels

of ADMA are increased in conditions associated
with atherosclerosis, including the risk factors of

age, hypertension, diabetes, insulin resistance, hyper-
cholesterolemia, hypertriglyceridemia and hyperho-
mocyst(e)inemia.33-40 Evidence supports the notion
that the elevation in plasma ADMA is associated with
an impairment of NO synthesis in these individuals.
For example, we observe that in hypercholesterolemic
adults an intravenous infusion of L-arginine restores
endothelial function and increases NO production as
measured by urinary nitrate excretion.38
Plasma ADMA levels can alter quite rapidly in

humans, in response to changes in known risk factors.
Within hours of a high-fat meal, plasma ADMA levels
increase in diabetic patients and flow-mediated
vasodilation is diminished.41 A single oral dose of
methionine increases plasma homocysteine levels,
paralleled by an increase in plasma ADMA and an
attenuation of flow-mediated vasodilation.4° In
humans with salt-sensitive hypertension, the adminis-
tration of a high salt diet increases plasma ADMA and
blood pressure and reduces urinary nitrogen oxides.35
A low salt diet reverses these abnormalities.

In the following paper of these Proceedings, Dr
Boger reviews the evidence that high levels of plasma
ADMA are associated with vascular disease. Briefly
then, clinical studies support a linkage between accel-
erated atherosclerosis and elevated plasma ADMA
levels. In a small study of Japanese individuals with
varying levels of risk, multivariate analysis revealed
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that ADMA and age were the only independent
predictors of carotid intimal-medial thickness.33 In

patients with end-stage renal disease, ADMA levels
correlated with carotid intima-media thickness and
were predictive for progression of disease.42 Intimal
thickening in uterine arteries after hysterectomy corre-
lates with plasma ADMA levels.43 As expected of a
factor that may reduce the vasoprotective influence of
NO, plasma ADMA levels are associated with cardio-
vascular complications such as stroke, congestive heart
failure and peripheral arterial disease. 44-46 Plasma
ADMA levels are also related to the severity of periph-
eral arterial disease. 46 Notably, an intravenous infusion
of L-arginine improves limb blood flow and pain-free
walking distance in these patients.47 Cerebrovascular
disease is the second most common cause of dementia
after Alzheimer’s disease, which also may have a vas-
cular component. In this context, plasma ADMA levels
are elevated in patients with dementia, associated with
a reduction in plasma nitrogen oxides. 48
Plasma ADMA levels may be predictive of cardio-

vascular events and/or mortality. In the surgical inten-
sive care unit, elevated plasma ADMA values predict
an adverse outcome.49 In nonsmoking men with a
history of coronary heart disease, those in the upper
quartile of ADMA levels have a four-fold increased
risk of an acute coronary event.10 In patients with
end-stage renal disease, ADMA levels emerged as the
second strongest predictor of all-cause mortality after
age, outweighing established risk factors such as

hypertension, diabetes, hypercholesterolemia and
smoking.51 These small studies suggest that plasma
ADMA may be an independent risk factor for vascu-
lar disease. However, its value as a prognostic indica-
tor needs to be validated in the large, prospective
clinical trials that are now under way.

Lessons from the DDAH transgenic mouse

In the meantime, we have gained new insights from
the generation and characterization of a DDAH trans-
genic mouse at Stanford University. As discussed in
the accompanying papers, the enzyme dimethylargi-
nine dimethylaminohydrolase (DDAH) is responsible
for degrading about 80% of the ADMA that is

produced daily. We reasoned that overexpression of
DDAH would further reduce plasma ADMA levels
and thereby enhance the production of vasoprotective
NO. We further reasoned that overexpression of
DDAH would make animals resistant to the adverse
effects of vascular risk factors.

By way of explanation, we had previously shown
that a variety of cardiovascular risk factors cause
ADMA to accumulate. In endothelial cell culture or in

vivo, elevated levels of glucose, oxidized low-density
lipoprotein cholesterol or homocysteine are associ-
ated with a reduced activity of DDAH.52-54 Further

investigation disclosed that these traditional cardio-
vascular risk factors were reducing DDAH activity by
increasing vascular oxidative stress (we have also
made similar observations by exposing endothelial
cells to some nontraditional risk factors, specifically
the inflammatory cytokine tumour necrosis factor

alpha (TNFa) as well as cytomegalovirus) .52,55 Indeed,
antioxidants could reverse the adverse effect of these
risk factors on DDAH activity, ADMA accumulation
and NO synthesis. Our findings were consistent with a
subsequent observation by Vallance and colleagues
that DDAH is an oxidant sensitive enzyme by virtue
of a critical sulfhydryl group in its catalytic site.56

Accordingly, we hypothesized that overexpression
of DDAH would reduce plasma and tissue ADMA
levels and thereby increase elaboration of vasoprotec-
tive NO. In our DDAH transgenic mouse, the human
DDAH-1 gene is driven by a beta-actin promoter,
causing the overexpression of human DDAH in all
tissues. 57 We documented by Northern analysis,
immunohistochemistry and enzymatic assays that
human DDAH was overexpressed in these animals,
with increased tissue activity and, to our delight, the
plasma and tissue ADMA levels were reduced by half.
To our greater happiness, this reduction in ADMA lev-
els was associated with a doubling of urinary nitrogen
oxides, indicating increased NO synthesis. Moreover,
the increase in NOS activity had the hemodynamic
effect of reducing systemic vascular resistance by
about 10% (reducing systemic vascular resistance in
an otherwise normal mouse is no easy feat, there being
many countervailing mechanisms to maintain blood
pressure in a narrow range). This study provided
compelling evidence for the importance of DDAH
activity and plasma ADMA levels in the regulation of
NO synthesis.57

Vasoprotective effects of DDAH overexpression
Would an increase in DDAH activity have a vasopro-
tective effect? Would overexpression of DDAH reduce
the susceptibility of the NOS pathway to cardiovascu-
lar risk factors? Would it reduce the susceptibility of
the animal to disease? Investigations are ongoing, but
the preliminary results are very encouraging.
We began by determining the effect of hyper-

glycemia on ADMA accumulation in these animals. In
normal mice, a glucose challenge increases plasma
ADMA levels. In the DDAH transgenic mice, the
glucose-induced increase in plasma ADMA was sig-
nificantly attenuated. Furthermore, to our surprise, the
animals manifested greater sensitivity to insulin.
These observations are discussed in greater detail

by Dr Sydow in the Proceedings and will not be
elaborated upon further here. Suffice to say that
the observations in this study were consistent with the
hypothesis that overexpression of DDAH would be
protective against the adverse effect of cardiovascular
risk factors on the NOS pathway.
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In parallel, we initiated studies to determine if
DDAH overexpression would have beneficial effects
on vascular structure. We have previously shown that
ADMA is an endogenous anti-angiogenic factor. In
apolipoprotein E-deficient mice, hypercholes-
terolemia is associated with increased levels of plasma
ADMA and attenuated angiogenesis. 58 The effect of
ADMA on angiogenesis can be reversed by adminis-
tration of supplemental L-arginine. These data are

consistent with previous observations disclosing a

critical role of endothelium-derived NO in angio-
genesis.59 Accordingly, we hypothesized that the

DDAH transgenic mice would have greater angio-
genic capacity by virtue of their ability to generate
more NO.
To test this hypothesis, we used a murine hindlimb

ischemia model. Wildtype or DDAH transgenic
mice underwent surgical ligation of the superficial and
deep femoral arteries.6° In some animals, osmotic
minipumps were placed to infuse ADMA continu-

ously. Two weeks later, the angiogenic response to
ischemia was characterized using a microsphere
technique to assess limb perfusion, and quantitative
immunohistochemistry to assess capillary and arterio-
lar density. We found that infusion of ADMA reduced
vascular density and limb perfusion in the ischemic
hindlimb of the wildtype animals. In the DDAH

transgenic mice, the effect of exogenous ADMA was
blunted. Plasma and tissue ADMA levels were about
half of the concentrations observed in wildtype mice,
and vascular density and limb perfusion were signifi-
cantly greater. 60 Furthermore, tissue NOS activity
was greater in the ischemic hindlimb of the DDAH
transgenic mice. The enhancement of NO synthesis
probably explains the greater angiogenic capacity in
the DDAH transgenic animals.
To investigate further the vasoprotective effects of

DDAH overexpression, we have used a model of

transplant arteriopathy. The development of transplant
arteriopathy frequently limits the long-term success of
cardiac transplantation, and is the leading cause of
death in patients surviving more than 1 year after

transplantation.61 It is characterized by intimal pro-
liferation during the early phase of the disease, and
ultimately manifests itself as luminal stenosis of epi-
cardial branches, occlusion of smaller vessels, and
myocardial infarction.62 Ischemia-reperfusion injury
seems to be the strongest alloantigen-independent
factor for the subsequent development of transplant
arteriopathy.63 This injury induces oxidative stress,
leading to the elaboration of cytokines, chemokines
and adhesion molecules, together with endothelial
vasodilator dysfunction, that may participate in trans-
plant arteriopathy.64-66 Because of the prominent role
of oxidative stress in this condition, we hypothesized
that ADMA may be contributory. We further hypothe-
sized that overexpression of DDAH may be protective
in this condition.

Donor hearts of C-H-2bm’2KhEg (H-2bm’2) mice
were heterotopically transplanted into C57BL/6

(H-2b) DDAH transgenic mice or wild-type litter-
mates and procured 30 days after transplantation. 67 No
immunosuppression was used. In this model, acute
rejection is not observed, but the single human leuko-
cyte antigen mismatch is associated with transplant
arteriopathy and eventual allograft failure. Plasma
ADMA concentrations were approximately 40%
lower in DDAH transgenic animals compared with
wild-type littermates 30 days after heterotopic heart
transplantation. 67 Additionally, in the allografts trans-
planted into DDAH transgenic mice there was reduced
expression of known mediators of transplant arteri-
opathy, including the endothelial adhesion molecules
ICAM-1 and VCAM-1, the chemokine MCP-1, and
the inflammatory cytokines TNFa, interferon-

gamma, and transforming growth factor-beta. Marked
fibro-intimal thickening and luminal narrowing,
morphologically resembling typical transplant arteri-
opathy, was observed in donor hearts transplanted into
wild-type recipients. In the hearts transplanted into the
DDAH transgenic mice, we observed approximately
50% less intimal thickening as assessed by the intima-
to-media ratio.67 These studies provided further
evidence to support the hypothesis that ADMA, by
regulating NO synthesis, has powerful effects upon
vascular inflammation and structure.

Conclusion

Accumulating evidence supports the hypothesis
that plasma and tissue ADMA levels regulate NO
synthesis. Additionally, ADMA may mediate the
adverse effect of cardiovascular risk factors on the
NOS pathway. Furthermore, DDAH plays a dominant
role in regulating ADMA levels. Changes in expres-
sion or activity of DDAH have significant effects on
plasma and tissue ADMA levels, NOS activity, and
thereby vascular function and structure (Figure 1).
Modulation of DDAH activity or expression may
therefore provide a new therapeutic avenue for treat-
ing vascular disorders.
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Figure 1 Endothelium derived nitric oxide (NO) is
vasoprotective by virtue of its inhibition of processes
involved in atherogenesis. NO suppresses vascular
smooth muscle (VSM) proliferation, vascular inflam-
mation, and platelet adhesion and aggregation. Cardio-
vascular risk factors such as hypercholesterolemia
(LDL-C), hypertension (HTN), diabetes mellitus (DM),
hyperhomocysteinemia (HCY) and cytomegalovirus
(CMV) increase vascular oxidative stress. Superoxide
anion (02 ) inhibits the activity of dimethylarginine
dimethylaminohydrolase (DDAH). Inhibition of DDAH
permits asymmetric dimethylarginine (ADMA) to accu-
mulate, suppressing the synthesis of NO. (NOS, nitric
oxide synthase.)
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