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Basic Science for Clinicians

Reciprocal Relationships Between Insulin Resistance and
Endothelial Dysfunction

Molecular and Pathophysiological Mechanisms
Jeong-a Kim, PhD; Monica Montagnani, MD, PhD; Kwang Kon Koh, MD; Michael J. Quon, MD, PhD

Abstract—Endothelial dysfunction contributes to cardiovascular diseases, including hypertension, atherosclerosis, and
coronary artery disease, which are also characterized by insulin resistance. Insulin resistance is a hallmark of metabolic
disorders, including type 2 diabetes mellitus and obesity, which are also characterized by endothelial dysfunction.
Metabolic actions of insulin to promote glucose disposal are augmented by vascular actions of insulin in endothelium
to stimulate production of the vasodilator nitric oxide (NO). Indeed, NO-dependent increases in blood flow to skeletal
muscle account for 25% to 40% of the increase in glucose uptake in response to insulin stimulation. Phosphatidylinositol
3-kinase—dependent insulin-signaling pathways in endothelium related to production of NO share striking similarities
with metabolic pathways in skeletal muscle that promote glucose uptake. Other distinct nonmetabolic branches of
insulin-signaling pathways regulate secretion of the vasoconstrictor endothelin-1 in endothelium. Metabolic insulin
resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase—dependent signaling, which
in endothelium may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased
blood flow, which worsens insulin resistance. Therapeutic interventions in animal models and human studies have
demonstrated that improving endothelial function ameliorates insulin resistance, whereas improving insulin sensitivity
ameliorates endothelial dysfunction. Taken together, cellular, physiological, clinical, and epidemiological studies
strongly support a reciprocal relationship between endothelial dysfunction and insulin resistance that helps to link
cardiovascular and metabolic diseases. In the present review, we discuss pathophysiological mechanisms, including
inflammatory processes, that couple endothelial dysfunction with insulin resistance and emphasize important therapeutic
implications. (Circulation. 2006;113:1888-1904.)
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Insulin resistance is typically defined as decreased sensitiv-
ity and/or responsiveness to metabolic actions of insulin
that promote glucose disposal. This important feature of
diabetes, obesity, glucose intolerance, and dyslipidemia is
also a prominent component of cardiovascular disorders,
including hypertension, coronary artery disease, and athero-
sclerosis, which are characterized by endothelial dysfunc-
tion.! Conversely, endothelial dysfunction is present in dia-
betes, obesity, and dyslipidemias.> Moreover, it is firmly
established that these metabolic disorders are major risk
factors for cardiovascular diseases.? In addition to its essential
metabolic actions, insulin has important vascular actions that
involve stimulation of the production of nitric oxide (NO)
from endothelium, leading to vasodilation, increased blood
flow, and augmentation of glucose disposal in skeletal mus-
cle.* Elucidation of insulin-signaling pathways regulating
endothelial production of NO reveals striking parallels with
metabolic insulin-signaling pathways in skeletal muscle and

adipose tissue.>° Other distinct insulin-signaling pathways in
endothelium (unrelated to metabolic actions of insulin) reg-
ulate secretion of the vasoconstrictor endothelin-1 (ET-1).”
Mechanisms contributing to insulin resistance and endothelial
dysfunction include glucotoxicity, lipotoxicity, and inflam-
mation. Molecular and pathophysiological mechanisms un-
derlying reciprocal relationships between insulin resistance
and endothelial dysfunction result in a vicious cycle reinforc-
ing the link between metabolic and cardiovascular disorders.
Therapeutic interventions that improve endothelial function
and/or insulin sensitivity ameliorate metabolic and cardiovas-
cular abnormalities in animal and clinical investigations.
Thus, molecular, cellular, physiological, and clinical studies
strongly support the hypothesis that reciprocal relationships
between insulin resistance and endothelial dysfunction pro-
vide a pathophysiological mechanism connecting disorders of
metabolic and cardiovascular homeostasis typified by the
metabolic syndrome.
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Figure 1. General features of insulin signal transduction path-
ways. Pl 3-kinase branch of insulin signaling regulates GLUT4
translocation and glucose uptake in skeletal muscle and NO
production and vasodilation in vascular endothelium. MAP-
kinase branch of insulin signaling generally regulates growth and
mitogenesis and controls secretion of ET-1 in vascular
endothelium.

Insulin Signaling in Vascular Endothelium

General Features of Insulin Signal

Transduction Pathways

Figure 1 shows general features of insulin signal transduction
pathways.®° Biological actions of insulin are initiated by the
binding of insulin to its cell surface receptor, a ligand-acti-
vated tyrosine kinase. Activated insulin receptors phosphor-
ylate intracellular substrates, including insulin receptor sub-
strate (IRS) family members and Shc, which serve as docking
proteins for downstream signaling molecules. Tyrosine-phos-
phorylated motifs on IRSs specifically bind to SH2 domains
contained in adaptor proteins, such as the p85 regulatory
subunit of phosphatidylinositol (PI) 3-kinase or Grb-2. When
SH2 domains of p85 bind to tyrosine-phosphorylated IRS-1,
this results in activation of the catalytic pl10 subunit of
phosphatidylinositol (PI) 3-kinase. Similarly, when the SH2
domain of Grb-2 binds to tyrosine-phosphorylated Shc, this
results in activation of the preassociated guanosine triphos-
phate (GTP) exchange factor Sos. Activation of PI 3-kinase
generates lipid products, including PI (3,4,5) Ps. This initiates
a cascade of serine kinases where phosphoinositide-
dependent kinase-1 (PDK-1) is phosphorylated and activated
to phosphorylate and activate Akt and other serine kinases
that themselves phosphorylate and activate downstream sub-
strates. This cascade ultimately culminates in the pleiotropic
biological actions of insulin. A similar signaling pathway
proceeds from Sos, which activates the small GTP binding
protein Ras, which then initiates a phosphorylation cascade
involving Raf, mitogen-activated protein (MAP)-kinase/ex-
tracellular signal-regulated kinase kinase (MEK), and MAP-
kinase. Insulin signal transduction pathways constitute a
highly complex network that includes multiple feedback
loops, cross-talk between major signaling branches, and
cross-talk from signaling pathways of heterologous recep-
tors.'0 Nevertheless, it is useful to consider PI 3-kinase—
dependent pathways as 1 major branch of insulin signaling
that regulates metabolic functions, whereas Ras/MAP-kinase
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insulin-signaling pathways are generally not involved in
mediating metabolic actions of insulin but rather in promot-
ing mitogenic and growth effects of insulin.

Insulin-Stimulated Production of NO
Insulin-signaling pathways in vascular endothelium leading
to the activation of endothelial NO synthase (eNOS) and
increased production of NO are completely distinct, separa-
ble, and independent from classical calcium-dependent mech-
anisms used by G-protein—coupled receptors, such as the
acetylcholine receptor.!! Recently, a complete biochemical
insulin-signaling pathway in endothelium regulating the pro-
duction of NO has been elucidated. This involves insulin
receptor phosphorylation of IRS-1, which then binds and
activates PI 3-kinase, leading to phosphorylation and activa-
tion of PDK-1, which in turn phosphorylates and activates
Akt.1-14 Akt directly phosphorylates eNOS at Ser''”’, result-
ing in increased eNOS activity and NO production!!-!>
(Figure 1). Activation of PI 3-kinase is necessary for insulin-
stimulated production of NO in endothelium.!?-'* However, it
is not sufficient because stimulation of endothelial cells with
growth factors such as platelet-derived growth factor acti-
vates PI 3-kinase and Akt without leading to phosphorylation
or activation of eNOS.!!12 In addition to phosphorylation,
other posttranslational modifications, including palmitoyl-
ation,'® nitrosylation,'®!7 and O-GlcNacylation,!® are impor-
tant regulatory mechanisms for subcellular targeting and
regulation of eNOS activity. All of these regulatory mecha-
nisms may contribute to basal and insulin-stimulated produc-
tion of NO. The Ras/MAP-kinase branch of insulin-signaling
pathways does not contribute to activation of eNOS in
response to insulin inasmuch as insulin-stimulated production
of NO is not substantially affected by inhibition of these
pathways.!?

Insulin-Stimulated Secretion of ET-1

Little is known about endothelial insulin-signaling pathways
regulating secretion of the vasoconstrictor ET-1. However, 1
recent study in bovine aortic endothelial cells (BAECs) has
demonstrated that MAP-kinase signaling is required for this
process but PI 3-kinase signaling is not” (Figure 2A). Insulin
treatment induces a 2-fold increase in ET-1 levels in condi-
tioned media. Pretreatment with wortmannin does not signif-
icantly affect insulin-stimulated ET-1 secretion. By contrast,
pretreatment with PD98059 completely blocks this effect of
insulin. In cell lysates from these experiments, as expected,
insulin-stimulated phosphorylation of Akt is completely
blocked by wortmannin pretreatment, whereas MAP-kinase
phosphorylation is unaffected (Figure 2B, lanes 2 and 3).
Furthermore, insulin-stimulated phosphorylation of MAP-
kinase is completely blocked by PD98059 pretreatment,
whereas Akt phosphorylation is unaffected (Figure 2B, lanes
2 and 4). Taken together, these results directly demonstrate
that insulin-stimulated secretion of ET-1 in endothelial cells
is mediated by MAP-kinase—dependent signaling pathways
independent of PI 3-kinase—dependent signaling.

Insulin-Stimulated Expression of

Adhesion Molecules

Another insulin action that regulates vascular function is
stimulation of the expression of vascular cell adhesion mol-
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Figure 2. Insulin-stimulated secretion of ET-1 from vascular en-
dothelial cells is mediated by MAP-kinase (MAPK)-dependent
pathways but not Pl 3-kinase-dependent pathways.” Levels of
ET-1 in conditioned media from BAECs were measured under
basal conditions and after acute insulin stimulation (100 nmol/L,
5 minutes) without or with pretreatment with wortmannin (PI
3-kinase inhibitor) or PD98059 (MEK inhibitor). P-Akt indicates
phospho-Akt; P-MAPK, phospho-MAPK.

ecule (VCAM)-1 and E-selectin on endothelium. MAP-
kinase—dependent signaling pathways (but not PI 3-kinase
pathways) regulate these functions of insulin.!®

Other Hormones That Mimic Insulin Signaling

in Endothelium

In addition to insulin, there is a growing list of hormones
involved in the regulation of vascular and metabolic physi-
ology that acutely activate eNOS in vascular endothelium by
PI 3-kinase—dependent signaling mechanisms, leading to
phosphorylation of eNOS. This includes leptin,?° adiponec-
tin,?! high-density lipoprotein (HDL),?? estrogen,?* glucocor-
ticoids,?>* and dehydroepiandrosterone (DHEA).2> Moreover,
DHEA has acute nongenomic vascular actions that stimulate
the secretion of ET-1 from endothelium by a MAP-kinase—
dependent mechanism similar to that used by insulin.?

Hemodynamic Actions of Insulin
Vasodilation leading to increased blood flow is a major
physiological consequence of insulin-stimulated production
of NO in vascular endothelium. Endothelium-derived NO
diffuses into adjacent vascular smooth muscle, where it
evokes vasorelaxation. Insulin-mediated vasodilation in skel-
etal muscle occurs in 2 distinct stages.?® First, dilation of
terminal arterioles increases the number of perfused capillar-
ies (capillary recruitment) within a few minutes without
concomitant changes in total limb blood flow. Second,
relaxation of larger resistance vessels increases overall limb
blood flow within 30 minutes after stimulation with physio-
logical concentrations of insulin (maximum flow was reached
after 2 hours).?” Overall vasodilator response to insulin is an

integration of both capillary recruitment and increased total
blood flow.

Capillary Recruitment in Skeletal Muscle
Insulin-stimulated capillary recruitment was first studied in
rat hindlimb by measuring endothelial metabolism of exog-
enously infused 1-methylxanthine.?® Recently, a more sensi-
tive, specific, and less invasive technique involving ultra-
sound imaging of skeletal muscle during microbubble
contrast infusion has been shown to allow for accurate
assessment of capillary recruitment in response to insulin.2® A
significant 1.5-fold increase in capillary recruitment has been
observed in rat hindlimb 10 minutes after the initiation of
insulin infusion during euglycemic glucose clamp (steady-
state plasma insulin levels =600 pmol/L). After 30 minutes,
capillary recruitment increases to 2-fold over basal, and this is
maintained over a 2-hour insulin infusion period.?62° These
effects are NO dependent,?® and even very low concentrations
of insulin (eg, ~300 pmol/L insulin) that do not alter total
limb blood flow elicit significant increases in capillary
recruitment.?*3° Ultrasound imaging of skeletal muscle dur-
ing microbubble contrast infusion has also been applied in
deep flexor muscles of the human forearm, where local
intra-arterial insulin infusion (arterial insulin levels ~320
pmol/L) causes a 25% increase in muscle capillary blood
volume. This is significantly higher than that observed after
saline infusion in the same arm or in the contralateral arm that
did not receive insulin.?!

Blood Flow to Skeletal Muscle
Concentration-dependent increases in total limb blood flow in
response to intravenous insulin infusion spanning the physi-
ological to pharmacological range is well documented in
animals and humans.?%-27-32-34 However, by contrast with
capillary recruitment, the slower time course for insulin-
mediated increases in limb blood flow requires several hours
for a maximal effect to become evident. Insulin infusion at
physiological concentrations under euglycemic glucose-
clamp conditions causes a dose-dependent doubling in skel-
etal muscle blood flow that is NO dependent.?”33> However,
some controversy exists over the precise time course and
whether physiological concentrations of insulin cause signif-
icant increases in total limb flow. Some of this controversy
may be explained by differential sensitivity and/or technical
limitations of various experimental approaches for estimating
limb blood flow (eg, plethysmography, thermodilution,
positron emission tomography, dye dilution, Doppler ultra-
sound, and ultrasound measurements of brachial or femoral
artery diameter).’> The preponderance of experimental evi-
dence in animals and humans in vivo strongly suggests that
insulin signaling in vascular endothelium related to the
production of NO has physiological consequences resulting
in capillary recruitment and increased blood flow in skeletal
muscle, which contributes to glucose disposal.

Opposing Hemodynamic Actions of Insulin

In addition to NO-dependent vasodilator actions, insulin has
other biological actions that have an impact on hemodynamic
homeostasis. Insulin stimulates secretion of the vasoconstric-
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tor ET-1 from endothelium. Vasodilator actions of insulin in
humans are potentiated by ET-1 receptor blockade.?® Consis-
tent with the MAP-kinase dependence of insulin-stimulated
secretion of ET-1 in vascular endothelium,” inhibition of
MAP-kinase pathways blocks vasoconstrictor effects of insu-
lin in rat skeletal muscle arterioles.3” Stimulation of sympa-
thetic activity by insulin may also contribute to hemodynamic
regulation. In healthy lean people, physiological concentra-
tions of insulin increase plasma norepinephrine levels as well
as sympathetic nerve activity.?® In patients with regional
sympathectomy, NO-dependent vasodilation in response to
insulin occurs more quickly in the denervated limb than in the
innervated limb.3° Thus, sympathetic activation in response to
insulin (presumably a-adrenergic) may oppose vasodilator
actions of insulin. However, B-adrenergic activation in re-
sponse to insulin may cause vasodilation.*® Finally, insulin-
stimulated renal reabsorption of sodium favors expansion of
extracellular fluid volume, which may predispose an individ-
ual to hypertension.#! Thus, insulin has multiple opposing
hemodynamic actions with a negligible net effect on blood
pressure in normal individuals. A shift in balance between
vasoconstrictor and vasodilator actions of insulin may be an
important factor in the vascular pathophysiology of insulin
resistance.

Insulin Action Couples Hemodynamic and
Glucose Homeostasis

Vasodilator actions of insulin play a central physiological
role in coupling hemodynamic and metabolic homeostasis
under healthy conditions (Figure 3, left). Evidence supporting
this hypothesis has emerged from investigations of insulin-
signaling pathways in skeletal muscle, adipose tissue, and
vascular endothelium as well as from physiological studies
manipulating blood flow and glucose metabolism.

Parallel Insulin-Signaling Pathways in Metabolic
and Vascular Tissues

Insulin-stimulated glucose uptake in skeletal muscle and
adipose tissue is mediated by translocation of the insulin-
responsive glucose transporter GLUT4 to the cell surface.
This requires PI 3-kinase—dependent signaling pathways that
involve the insulin receptor, IRS-1, PI 3-kinase, PDK-1, and

Translocation

Insulin

Dvsfunction *—  Resistance

Akt. Ras/MAP kinase pathways do not contribute signifi-
cantly to insulin-stimulated translocation of GLUT4. Al-
though activation of PI 3-kinase and Akt is necessary, it is not
sufficient for GLUT4 translocation because platelet-derived
growth factor stimulates activation of PI 3-kinase and Akt
without causing translocation of GLUT4 in adipose cells.” As
discussed in the previous section on insulin signaling in
vascular endothelium, the vascular actions of insulin that
stimulate the production of NO require PI 3-kinase—depen-
dent insulin-signaling pathways that bear striking similarities
to metabolic insulin-signaling pathways. PI 3-kinase is nec-
essary but not sufficient for insulin-stimulated production of
NO, and Ras/MAP-kinase pathways do not participate in the
insulin-stimulated production of NO (although they do stim-
ulate the secretion of ET-1 in response to insulin). Activation
of specific metabolic insulin-signaling pathways in skeletal
muscle results in increased glucose uptake. Activation of
highly parallel insulin-signaling pathways in vascular endo-
thelium leads to increased blood flow to skeletal muscle.
Thus, shared insulin-signaling pathways in metabolic and
vascular target tissues with complementary functions may
provide 1 mechanism to couple the regulation of glucose and
hemodynamic homeostasis.

Contribution of Blood Flow to

Glucose Metabolism

If glucose metabolism is coupled with blood flow, changes in
metabolism will induce alterations in blood flow, whereas
increasing flow will drive changes in metabolism. It is well
established that increased metabolic activity recruits addi-
tional blood flow to supply necessary substrates.> Con-
versely, experiments in rat hindlimb demonstrate that increas-
ing blood flow while maintaining glucose and insulin at
constant physiological levels results in flow-dependent in-
creases in glucose disposal.** Insulin-stimulated increases in
capillary recruitment and blood flow enhance the delivery of
glucose to skeletal muscle, where mass action promotes
glucose transport. Elevations in flow also increase the deliv-
ery of insulin to skeletal muscle, where insulin exerts direct
effects to promote glucose uptake through stimulating the
translocation of GLUT4. Indeed, changes in insulin-mediated
capillary recruitment are positively correlated with changes in
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insulin-stimulated glucose disposal.?® Of note, physiological
concentrations of insulin stimulate the recruitment of capil-
laries before changes in total blood flow can be detected.?¢
The time course for insulin-stimulated capillary recruitment
approximates the time course for insulin-mediated glucose
uptake in skeletal muscle.?® Moreover, inhibitors of NOS that
block insulin-mediated capillary recruitment cause a concom-
itant ~40% reduction in glucose disposal.?*3? In human
studies, insulin stimulates parallel increases in leg glucose
disposal and blood flow in a dose-dependent manner.+4-4¢
Although the time course of leg blood flow during physio-
logical hyperinsulinemia is slower than that for glucose
uptake, it generally follows leg glucose uptake. Infusion of
the competitive NOS inhibitor N°-monomethyl-L-arginine
completely blocks the effect of insulin on flow and partially
blocks insulin-stimulated leg glucose uptake.*>4¢ Taken to-
gether, animal and human studies suggest that skeletal muscle
capillary recruitment and blood flow play an important
physiological role in augmenting the delivery of insulin and
glucose to metabolic insulin target tissues. Insulin-stimulated
increases in total limb blood flow, per se, may account for up
to 40% of insulin-mediated glucose disposal.** Thus, insulin
has direct effects (increasing glucose uptake in skeletal
muscle) and substantial indirect effects (promoting glucose
disposal by increasing blood flow). This cross-talk between
metabolic and vascular tissues is important for coupling
glucose homeostasis and endothelial function.

Shared Mechanisms Underlying Insulin
Resistance and Endothelial Dysfunction
Genetic and environmental factors contribute to insulin resis-
tance and endothelial dysfunction. Interestingly, some of the
same mechanisms underlying acquired insulin resistance also
contribute to endothelial dysfunction (Figure 4). In particular,
the hyperglycemia of diabetes leads to glucotoxicity, which
causes insulin resistance and endothelial dysfunction. Simi-
larly, elevated free fatty acid (FFA) levels in diabetes,
obesity, and dyslipidemias lead to lipotoxicity, which under-
lies other shared mechanisms of insulin resistance and endo-
thelial dysfunction. Proinflammatory states associated with
metabolic and cardiovascular diseases represent a third cate-

gory of shared mechanisms between insulin resistance and
endothelial dysfunction.

Glucotoxicity and Insulin Resistance

Hyperglycemia associated with diabetes causes insulin resis-
tance by increasing oxidative stress, formation of advanced
glycation end products (AGEs), and flux through the hex-
osamine biosynthetic pathway.

Oxidative Stress
Hyperglycemia increases the production of reactive oxygen

species (ROS), although the precise mechanisms remain to be
elucidated. Treatment of cells with uncouplers of mitochon-
drial oxidative phosphorylation or overexpression of uncou-
pling protein (UCP)-1 or of manganese superoxide dismutase
inhibits ROS production in response to hyperglycemia. In
addition, these manipulations prevent glucose-induced pro-
tein kinase C (PKC) activation, the formation of AGEs,
sorbitol accumulation, and the activation of nuclear factor
(NF)-kB.#7 Increased ROS results in insulin resistance with
impaired insulin-stimulated translocation of GLUT4 and
glucose uptake. Moreover, antioxidants, including «a-lipoic
acid, protect against these ROS effects on glucose transport in
vitro and in vivo.*3-50 Increased oxidative stress is associated
with the stimulation of various serine/threonine kinases and
the activation of transcription factors NF-«B and activator
protein (AP)-1, which lead to insulin resistance. Activation of
serine/threonine kinases c-Jun NH,-terminal kinase (JNK),
PKCs, and IkB kinase complex B (IKKp) leads to serine
phosphorylation of IRS-1, which impairs its ability to bind
and activate PI 3-kinase. This leads to diminished activation
of downstream kinases Akt and PKC-¢, which results in
decreased GLUTH4 translocation and glucose transport.5'-33 In
addition, ROS activates proinflammatory signaling, which
leads to phosphorylation of IKK 3 and NF-kB.5* Activation of
NF-«B and AP-1 regulates transcription of proinflammatory
genes, including interleukin (IL)-6, IL-1[3, and tumor necrosis
factor (TNF)-a. The contribution of inflammatory signaling
to insulin resistance and endothelial dysfunction will be
discussed in more detail below.

Advanced Glycation End Products
AGE formation is enhanced by hyperglycemia and oxidative

stress.*’” Human glycated end products inhibit insulin-
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stimulated tyrosine phosphorylation of IRS-1 and IRS-2,
leading to impaired activation of PI 3-kinase and Akt, with a
decrease in activity of glycogen synthase in an L6 skeletal
muscle cell line.>> Moreover, AGE produces ROS and in-
creases oxidative stress by activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase through specific
receptors for AGE (RAGEs).>® RAGE stimulates proinflam-
matory signaling, leading to the activation of NF-«B.>”

Hexosamine Biosynthetic Pathway
Increased flux through the hexosamine biosynthetic pathway

(HSP) is another proposed mechanism by which hyperglyce-
mia causes insulin resistance.’® Glutamine:fructose-6-
phosphate amidotransferase (GFAT) is the rate-limiting en-
zyme of this pathway, whose end product is uridine 5’-
diphosphate (UDP)-GIcNAc. This, in turn, is a substrate for
O-GIcNAc transferase, which mediates posttranslational
modification of proteins. Overexpression of GFAT in trans-
genic mice causes insulin resistance.>® HSP may function as
a nutrient sensor that plays a role in insulin resistance and
vascular complications by causing reversible O-GlcNAc
modifications at regulatory serine/threonine phosphorylation
sites on proteins involved with insulin signaling.®® For exam-
ple, increased O-GlcNacylation of IRS-1 may lead to reduced
insulin-stimulated translocation of GLUT4 and decreased
glucose uptake.6!.02

Glucotoxicity and Endothelial Dysfunction
Hyperglycemia induces expression of extracellular matrix
and procoagulant proteins, increases apoptosis of endothelial
cells, decreases endothelial cell proliferation, and inhibits
fibrinolysis, resulting in endothelial dysfunction.®®* Many of
the molecular mechanisms underlying hyperglycemia-
induced insulin resistance also apply to endothelial
dysfunction.

Oxidative Stress
Increased superoxide scavenges NO and produces peroxyni-

trite, which reduces the bioavailability of NO and impairs
vasodilation.®* In addition, ROS activates PKC-«, PKC-j3,
and PKC-6, leading to differential gene expression for eNOS,
ET-1, vascular endothelial growth factor (VEGF), transform-
ing growth factor (TGF)-3, and plasminogen activator inhib-
itor (PAI)-1 and the activation of NF-«B, which increases
proinflammatory gene expression.®®> Hyperglycemia induces
apoptosis of endothelial cells and enhances the expression of
intercellular adhesion molecule (ICAM), VCAM, and
E-selectin, as well as production of IL-6 through the production
of ROS and activation of PKC.%>-¢7 Although PKC-« partici-
pates in the activation of eNOS in response to fibroblast growth
factor®® and VEGF® stimulation, PKC-« also directly phosphor-
ylates eNOS at Thr*’ (an inhibitory phosphorylation site). Thus,
the net role of PKC-a in the modulation of eNOS activity
remains to be clarified. Overexpression of UCP-2 inhibits the
production of ROS and the activation of NF-«B, leading to
improvement of endothelial function.”

Advanced Glycation End Products
Increased intermolecular cross-linking by AGE impairs the
function of endothelial proteins.”' AGE modifications of

Insulin Resistance and Endothelial Dysfunction 1893

extracellular matrix proteins, including collagen and laminin,
decrease vessel elasticity and increase fluid filtration.”> More-
over, modifications of intracellular and extracellular proteins
by AGE affect interactions between endothelial cells and
macrophages. Infiltrated macrophages become foam cells that
increase vascular inflammation and promote atherosclerosis.
RAGE is expressed in endothelial cells, where it contributes
to an increase in proinflammatory signaling by activation of
NF-kB. Furthermore, RAGE directly interacts with macro-
phages, promoting inflammation in the vessel wall.”

Hexosamine Biosynthetic Pathway
Increased flux through the HSP is another proposed mechanism

for hyperglycemia-induced vascular complications.®® In endo-
thelial cells, hyperglycemia increases flux through the HSP,
which mediates increased expression of TGF-B8 and PAI-1
relevant to the pathogenesis of vascular complications.”* In
addition, hyperglycemia increases O-GlcNacylation of eNOS at
the Akt phosphorylation site at Ser''”, leading to impairment of
eNOS activity. These defects are reversed by decreasing GFAT
expression or overexpression of UCP-1 or manganese superox-
ide dismutase.'®

Lipotoxicity and Insulin Resistance

Elevated levels of FFA observed in insulin-resistant states
including diabetes, obesity, and dyslipidemias represent an-
other major factor contributing to acquired insulin resis-
tance.” Infusion of FFA into humans blunts insulin-mediated
glucose uptake as well as NO-dependent limb blood flow,”¢
suggesting that elevated FFA levels are another link between
insulin resistance and endothelial dysfunction. Like hypergly-
cemia, elevated FFA levels induce oxidative stress and
proinflammatory signaling.

Oxidative Stress
Recent studies using magnetic resonance spectroscopy in

humans have revealed that increased FFA levels directly
inhibit glucose transport by causing mitochondrial dysfunc-
tion.””7% Indeed, increased intramyocellular lipid levels are
associated with reduced mitochondrial oxidation in insulin-
resistant patients.”’?8* FFA metabolites including fatty acyl
coenzyme A (CoA) and diacylglycerol stimulate novel PKCs,
such as PKC-6, that promote insulin resistance.”” PKC-6
directly phosphorylates IRS-1 at Ser''”" in response to FFA
treatment, leading to impaired IRS-1 and Akt function.s!
Consistent with this, PKC-6—null mice are protected against
glucose intolerance caused by lipid infusion.®? Mitochondrial
dysfunction uncouples oxidative phosphorylation, leading to
increased generation of ROS. Moreover, increased expression
of NADPH oxidase associated with obesity causes dysregu-
lated production of adipokines, including adiponectin, PAI-1,
IL-6, and monocyte chemoattractant protein (MCP)-1, and
reduced expression of detoxifying enzymes, such as Cu-Zn
superoxide dismutase and peroxisome proliferator—activated
receptor y (PPARY). Inhibition of NADPH oxidase with
apocynin reduces ROS production, improves glucose metab-
olism, and attenuates dysregulation of adipokines.>! Thus,
lipotoxicity may increase oxidative stress in adipose tissue,
which causes aberrant secretion of adipokines, leading to
impaired glucose metabolism in skeletal muscle.
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Proinflammatory Signaling
Activation of proinflammatory signaling pathways is a well-

established mechanism for FFA to induce insulin resistance.
Increased ROS in response to FFA activates NF-«B, which
further stimulates the production of other proinflammatory
cytokines, including TNF-a and IL-6.33-35 TNF-« activates
IKKB and JNK, which play a central role in cross-talk
between inflammatory signaling and insulin signaling, lead-
ing to insulin resistance by phosphorylating IRS-1/2 on serine
residues.>38¢ Salicylate or aspirin, inhibitors of IKKf, pre-
vent lipid- or obesity-induced insulin resistance.8”-88 IKKf3
(+/—) or JNK1 (—/—) knockout mouse models are protected
against insulin resistance induced by high-fat feeding.538788

Ceramide

Ceramide, a product derived from long-chain saturated fatty
acids inhibits insulin-stimulated activation of Akt and trans-
location of GLUT4.8° Ceramide content in skeletal muscle of
obese humans is increased,”® and overexpression of acid
ceramidase protects against FFA-induced insulin resistance in
vitro.°!

Lipotoxicity and Endothelial Dysfunction

Elevated levels of FFA and other features of dyslipidemias
directly damage the vascular wall, leading to endothelial
dysfunction through many of the same mechanisms involved
with FFA-mediated insulin resistance.

Oxidative Stress

Lipid infusion increases ROS production and inflammation in
humans, leading to impaired flow-mediated brachial artery
dilation.”? FFA stimulates NADPH oxidase to produce ROS
through a PKC-dependent mechanism in endothelial cells.”?
Mitochondrial dysfunction in endothelium increases oxida-
tive stress and uncouples oxidative phosphorylation, which
may lead to endothelial dysfunction.®> ROS scavenges NO
and produces peroxynitrite, which damages endothelial
cells.”* Overexpression of UCP-2 attenuates free radical
production and oxidative damage mediated by FFA-induced
activation of NF-«kB.>> UCP-2 overexpression also improves
the impaired vascular relaxation and endothelial cell apopto-
sis induced by FFA.70

Proinflammatory Signaling

FFA activates proinflammatory signaling pathways via NF-
kB.%¢ Palmitate stimulates the production of IL-6 in endothe-
lial cells in vitro and raises plasma IL-6 levels in humans.®”
FFA treatment of endothelial cells impairs insulin-stimulated
activation of eNOS and NO production by the activation of
IKKB, which leads to impaired insulin signaling in
endothelium.”8

Ceramide
FFA inhibits endothelial cell proliferation and increases

apoptosis.”” Ceramide activates eNOS and increases NO
production.'® However, ceramide also produces excess ROS,
which scavenges NO to produce peroxynitrite.'°! Thus, the
net effect of ceramide is to reduce the bioavailability of NO,
leading to endothelial dysfunction.

Inflammation and Insulin Resistance

Diabetes, obesity, and other chronic metabolic disorders are
associated with proinflammatory states characterized by in-
creased circulating markers of inflammation as well as
infiltration of adipose tissue with activated macro-
phages.102.103 Tn particular, the inflammatory marker
C-reactive protein (CRP) has been identified as a risk factor
for developing type 2 diabetes.!'®* There are a number of
potential biochemical mechanisms for the contribution of
proinflammatory signaling to insulin resistance.!®> The most
extensively studied proinflammatory cytokine implicated in
insulin resistance is TNF-a. TNF-a activates of variety of
serine kinases, including JNK, IKKf, and IL-1 receptor—
associated kinase,'°0-1%° which directly or indirectly increase
serine phosphorylation of IRS-1/2, leading to decreased
activity of PI-3 kinase and Akt. In addition, suppressors of
cytokine-signaling proteins are induced by treatment of cells
with TNF-q, IL-183, or IL-6. Increased expression of suppres-
sors of cytokine-signaling proteins interferes with interaction
of the insulin receptor and IRS-1 and enhances proteasomal
degradation of IRS-1.''9 Thus, proinflammatory cytokines
may contribute to insulin resistance by modulating insulin
signaling and transcription.

Inflammation and Endothelial Dysfunction
Dyslipidemias, coronary heart disease, and atherosclerosis
are cardiovascular disorders with endothelial dysfunction that
are associated with increased circulating levels of inflamma-
tory markers.!'! Proinflammatory cytokines, including
TNF-a and IL-1p, signal through their cognate receptors to
activate JNK and IKKf, which in turn lead to activation of
AP-1 and NF-«kB.''? This inhibits insulin-stimulated activa-
tion of eNOS'3 and expression of eNOS.!'* NF-«kB also
stimulates the expression of adhesion molecules, including
ICAM, VCAM, and E-selectin, which contribute to vascular
pathology.''> Of importance, NO has anti-inflammatory ac-
tions in endothelium to inhibit NF-«B activity!'® and reduce
the expression of leukocyte adhesion molecules VCAM,
ICAM, and E-selectin.!'” Thus, reduced bioavailability of NO
under basal conditions caused by insulin resistance may be an
additional pathogenic factor in chronic diseases (such as
atherosclerosis, hypertension, and diabetes) that have inflam-
matory components. TNF-a stimulates the expression of
other inflammatory proteins, including CRP and IL-6. CRP is
an important marker of vascular inflammation whose plasma
levels are correlated with a risk of cardiovascular disease.!!8
CRP may also directly promote cardiovascular disease by
modulating the expression of proinflammatory cytokines in
endothelium.!'® CRP decreases eNOS expression!?° and up-
regulates angiotensin receptor type 1 expression in endothe-
lium.'2! Moreover, CRP increases the expression of endothe-
lial ICAM, VCAM, E-selectin, and MCP-1 and increases the
secretion of ET-1.122123 Thus, CRP is an inflammatory
marker that may also directly contribute to the pathogenesis
of atherosclerosis and endothelial dysfunction.

Insulin Resistance Couples Vascular and
Metabolic Pathophysiology
An important consequence of insulin action coupling hemo-
dynamic and glucose homeostasis under healthy conditions is
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that in disease states, insulin resistance couples vascular and
metabolic pathophysiology. Several distinct mechanisms
work together to form a tight reciprocal relationship between
insulin resistance and endothelial dysfunction. These include
highly parallel insulin-signaling pathways controlling meta-
bolic functions in skeletal muscle and production of NO in
endothelium, reciprocal relationships between impaired
insulin-stimulated blood flow and glucose uptake, metabolic
and vascular consequences of pathway-specific impairment
in insulin signaling, pathophysiological cross-talk between
metabolic and vascular tissues mediated by hormones includ-
ing angiotensin II and adiponectin, and shared stressors that
individually contribute to insulin resistance and endothelial
dysfunction.

Shared Insulin-Signaling Pathways in Metabolic
and Vascular Target Tissues

An important determinant of coupling between insulin resis-
tance and endothelial dysfunction is the existence of parallel
insulin-signaling pathways in metabolic and vascular tissues
with distinct functions. As discussed in a previous section, the
insulin-signaling pathway involving the insulin receptor,
IRS-1, PI 3-kinase, PDK-1, and Akt regulates GLUT4 trans-
location and glucose uptake in skeletal muscle and adipose
tissue; the same pathway in endothelium regulates the acti-
vation of eNOS and production of NO (Figure 3, left). Thus,
factors causing impairment in this particular insulin-signaling
pathway in metabolic tissues also cause insulin resistance,
whereas the same impairment in insulin signaling in endo-
thelium leads to endothelial dysfunction (Figure 3,
right).>6-124125 This reasoning applies to acquired forms of
insulin resistance related to previously discussed stressors as
well as to genetic causes of insulin resistance. Indeed, mice
that are homozygous-null for the IRS-1 gene are not only
predictably insulin resistant but also have a hemodynamic
phenotype of hypertension with impaired endothelium-
dependent vasodilation.!?¢ Moreover, patients carrying a
point mutation in IRS-1 that has been implicated in insulin
resistance also show evidence of genetically based endothe-
lial dysfunction.!??

Coupling of Impaired Blood Flow With Impaired
Glucose Uptake

As mentioned in a previous section, insulin-stimulated in-
creases in blood flow contribute significantly to insulin-
stimulated glucose disposal. Thus, impairment in insulin
signaling leading to endothelial dysfunction is predicted to
cause impaired vasodilation with decreased blood flow that
contributes to metabolic insulin resistance in skeletal muscle
by reducing delivery of insulin and glucose. This view is
supported by evidence from human studies demonstrating
positive correlations between insulin resistance with respect
to vasodilator actions and metabolic actions of insulin in
diabetic and obese subjects.*>#¢ Mice that are homozygous-
null for the eNOS gene have an expected hemodynamic
phenotype of increased basal blood pressure but also are
insulin resistant.'?8 In addition, infusion of TNF-« in rats
blunts femoral artery blood flow and inhibits glucose uptake
in response to insulin, whereas contractile-induced blood
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Figure 5. Pathway-specific insulin resistance creates imbalance
between prohypertensive and antihypertensive vascular actions
of insulin exacerbated by compensatory hyperinsulinemia.5 SNS
indicates sympathetic nervous system.

flow and glucose uptake are unaffected.'>® Impairment in
insulin-stimulated capillary recruitment (in addition to
changes in total blood flow) may also play an important role
in insulin resistance.!3%13! In genetically obese insulin-resis-
tant Zucker fatty rats compared with lean Zucker rats,
capillary recruitment and glucose uptake in skeletal muscle
are significantly impaired in response to insulin.'3? Infusion
of triglycerides in rats inhibits insulin-stimulated capillary
recruitment and glucose uptake in skeletal muscle without
affecting total limb blood flow.!33

Pathway-Specific Insulin Resistance
A key feature of insulin resistance is that it is characterized by
specific impairment in PI 3-kinase—dependent signaling path-
ways, whereas other insulin-signaling branches, including
Ras/MAP-kinase—dependent pathways, are unaffected.!'?+134
This has important pathophysiological implications because
metabolic insulin resistance is usually accompanied by com-
pensatory hyperinsulinemia to maintain euglycemia. In the
vasculature and elsewhere, hyperinsulinemia will overdrive
unaffected MAP-kinase—dependent pathways, leading to an
imbalance between PI 3-kinase- and MAP-kinase—dependent
functions of insulin. As previously discussed, prohyperten-
sive effects of insulin to promote secretion of ET-1, activate
cation pumps, and increase expression of VCAM-1 and other
adhesion molecules are under the control of MAP-kinase—
signaling pathways (Figure 5). In endothelium, decreased PI
3-kinase signaling and increased MAP-kinase signaling in
response to insulin or other hormones including DHEA may
lead to decreased production of NO and increased secretion
of ET-1 characteristic of endothelial dysfunction (Figure 6).
Thus, the antihypertensive effects of insulin to stimulate the
production of NO are reduced under conditions of insulin
resistance. At the same time, insulin-resistant patients have
elevated plasma ET-1 levels, and hyperinsulinemia increases
ET-1 secretion in humans.!?> Pharmacological blockade of
ET-1 receptors (ET-A isoform) improves endothelial function
in obese and diabetic patients but not in lean insulin-sensitive
subjects.!36.137

A recent in vitro model of metabolic insulin resistance with
compensatory hyperinsulinemia provides support for the
concept that pathway-specific insulin resistance contributes
to the pathophysiology of endothelial dysfunction.'® Simul-
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Figure 6. Vasodilator actions of insulin and DHEA mediated by
NO are regulated by PI 3-kinase (PI3K)-dependent signaling
pathways. Vasoconstrictor actions are regulated by MAPK-
dependent signaling pathways.25 P indicates phosphorylation.

taneous treatment of endothelial cells with wortmannin (a PI
3-kinase inhibitor) and high insulin levels blunts PI 3-kinase—
dependent effects of insulin, such as induction of eNOS
expression and the production of NO. Of note, under these
conditions, insulin signaling through Ras/MAP-kinase path-
ways is substantially enhanced beyond that observed in the
absence of wortmannin. This leads to increased prenylation of
Ras and Rho proteins via the MAP-kinase pathway and
enhanced mitogenic responsiveness of cells to insulin and
VEGF, which are known to contribute to the proliferation of
vascular smooth muscle cells. In addition, upregulation of
endothelial cell adhesion molecules VCAM-1 and E-selectin
and increased rolling interactions of monocytes with endo-
thelial cells are observed. Thus, compensatory hyperinsulin-
emia in the presence of metabolic insulin resistance with
pathway-specific impairment of PI 3-kinase in endothelium
and vascular smooth muscle cells leads to enhanced mitogen-
ic actions of insulin through MAP-kinase—dependent path-
ways, which may contribute to key early events in the
pathogenesis of hypertension (Figure 7). In addition, de-
creased production of NO in endothelium mediated by insulin
resistance also contributes to accelerated atherosclerosis by
multiple mechanisms (Figure 8).

Pathophysiological Cross-Talk Between Metabolic
and Vascular Tissues

Adipose tissue secretes a variety of hormones (known col-
lectively as adipokines) that can modulate endothelial func-
tion. For example, TNF-« is a proinflammatory cytokine
secreted by adipose cells that may cause insulin resistance
and endothelial dysfunction.!'! In addition, components of
the renin-angiotensin system (RAS), including angiotensin II,
are present in adipose tissue.'3® Dysregulation of the RAS
contributes importantly to hypertension, as demonstrated by
the effectiveness of angiotensin-converting enzyme (ACE)
inhibitors and angiotensin II type 1 receptor blockers (ARBs)
in the treatment of essential hypertension. ACE inhibitors
improve insulin sensitivity in humans and decrease the

In Vitro Model of Metabolic Insulin Resistance with
Compensatory Hyperinsulinemia in Vascular Endothelium
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Figure 7. In vitro model of metabolic insulin resistance with
compensatory hyperinsulinemia in vascular endothelium.
Pathway-specific impairment in Pl 3-kinase-dependent signal-
ing decreases expression and activity of eNOS, whereas aug-
menting MAPK pathways increases expression of VCAM-1 and
E-selectin and increases monocyte adhesion to endothelium.®

incidence of diabetes in patients with cardiovascular dis-
ease.'?® This may be due to inhibition of cross-talk between
angiotensin II signaling and insulin signaling in metabolic
and vascular tissues.'#® Treatment of endothelial cells with
angiotensin II activates JNK and MAP-kinase pathways,
leading to increased serine phosphorylation of IRS-1, im-
paired PI 3-kinase activity, and endothelial dysfunction.!'4!
The endothelial dysfunction mediated by angiotensin II is
abolished by ARBs.'#? Inhibition of PI 3-kinase pathways in
metabolic tissues would be predicted to cause insulin resis-
tance. In addition to effects on insulin signaling, activation of
angiotensin II type 1 receptors by angiotensin II stimulates
the production of ROS via NADPH oxidase,!*? increases
expression of ICAM-1,'#* and increases ET-1 release from
endothelium.'#5 Thus, there are multiple direct and indirect
mechanisms for the RAS to contribute to insulin resistance
and endothelial dysfunction through the modulation of insulin
signaling and other pathways in metabolic and vascular
tissues.

Adiponectin is the most abundant adipokine secreted by
adipose cells and may couple the regulation of insulin
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sensitivity with energy metabolism. By contrast, with other
adipokines, increased levels of adiponectin are associated
with increased insulin sensitivity. Decreased plasma adi-
ponectin levels are observed in patients with obesity, type 2
diabetes, hypertension, metabolic syndrome, and coronary
artery disease and are significantly associated with low-level
chronic inflammatory conditions.!#¢:147 Adiponectin has met-
abolic actions that mimic those of insulin, which promote
glucose uptake and inhibit hepatic glucose production.!'4s
Interestingly, adiponectin also has vascular actions to stimu-
late the production of NO in endothelium?!' and has anti-
atherogenic and anti-inflammatory properties.!4°~152 Thus,
reduced expression of adiponectin may also contribute to
cross-talk between metabolic and vascular tissues, leading to
insulin resistance and endothelial dysfunction in metabolic
and cardiovascular diseases.

Secretion of ET-1 from vascular endothelium may mediate
cross-talk with metabolic tissues and thus cause insulin
resistance. ET-1 increases serine phosphorylation of IRS-1,
leading to decreased PI 3-kinase activity in vascular smooth
muscle cells.'5? This same mechanism may also be operative
in metabolic tissues, inasmuch as ET-1 impairs insulin-
stimulated translocation of GLUT4 in adipocytes.!>*155

Shared Stressors Causing Simultaneous Insulin
Resistance and Endothelial Dysfunction

One reason that metabolic and cardiovascular diseases are
often associated is that multiple stressors independently cause
insulin resistance and endothelial dysfunction. For example,
as discussed in the previous section, hyperglycemia leads to
increased oxidative stress, increased AGE, inflammation, and
increased flux through the HSP, and elevated levels of FFA
promote oxidative stress and inflammation. Thus, in diabetes,
obesity, metabolic syndrome, dyslipidemias, and cardiovas-
cular diseases, multiple pathogenic stressors simultaneously
cause insulin resistance in metabolic tissues and endothelial
dysfunction in vascular tissues.

Insights From Animal Models of the
Metabolic Syndrome

The spontaneously hypertensive rat (SHR) is a genetic model
of hypertension that is also insulin resistant.'>¢ Defects in
vascular responses to insulin can be detected in SHRs before
the onset of hypertension, suggesting that elevated blood
pressure per se does not determine insulin resistance in this
model.'>” Compared with age-matched normotensive Wistar-
Kyoto (WKY) control rats, SHRs at 12 weeks of age are
overweight, hypertensive, hyperinsulinemic, and insulin re-
sistant, with normal fasting glucose.” Thus, SHRs may be a
useful model of the human metabolic syndrome, in which
concepts such as coupling between insulin resistance and
endothelial dysfunction and the role of pathway-specific
insulin resistance may be evaluated.

In the mesenteric vascular bed (MVB) of SHRs ex vivo at
12 weeks of age, the vasodilator response to acetylcholine is
comparable to that in WKY control rats. Thus, endothelial
function with respect to acetylcholine appears normal. How-
ever, NO-dependent vasodilator response to insulin is signif-
icantly impaired, consistent with the concept that impaired
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insulin signaling leading to insulin resistance in metabolic
tissues also causes endothelial dysfunction with respect to
vasodilator actions of insulin. Interestingly, inhibition of PI
3-kinase pathways with wortmannin significantly reduces
insulin-mediated vasodilation in the MVB of WKY rats but
has no effect on SHRs. This suggests that PI 3-kinase—
dependent pathways are blunted in endothelium of SHRs,
consistent with insulin resistance. Moreover, treatment with
PD98059 (an inhibitor of MAP-kinase—dependent pathways)
unmasks vasodilator actions of insulin in the MVB of SHRs
but has no detectable effect on WKY rats. Similar findings
are evident after treatment of MVB with the ET-1 receptor
antagonists BQ788 and BQ123. Taken together, these data
suggest that in SHRs impaired PI 3-kinase pathways lead to
decreased production of NO and that increased insulin sig-
naling through MAP-kinase pathways leads to elevated se-
cretion of ET-1. This pathway-specific insulin resistance
causing imbalance in vasodilator and vasoconstrictor actions
of insulin may be exacerbated by compensatory hyperinsu-
linemia present in SHRs. Moreover, these defects in endo-
thelial insulin signaling in SHRs provide an explanation for
the decreased bioavailability of NO as well as the increased
secretion of ET-1, which may conspire to elevate peripheral
vascular resistance and contribute to hypertension and ath-
erosclerosis. Thus, SHRs as a model of the metabolic syn-
drome exemplify the concepts of parallel insulin-signaling
pathways in metabolic and vascular tissues helping to couple
blood flow and metabolism as well as pathway-specific
insulin resistance leading to vascular pathophysiology. Fur-
ther evidence to support the concept of a reciprocal relation-
ship between insulin resistance and endothelial dysfunction
comes from therapeutic interventions in SHRs with the
insulin-sensitizer rosiglitazone.!>® Treatment of SHRs with
this drug for 3 weeks results in lowering blood pressure,
improved insulin sensitivity, decreased insulin levels, and
decreased ET-1 levels as well as improvement in endothelial
function with normalization of vasodilator responses to
insulin in MVB. Thus, insulin sensitizers may rebalance
insulin signaling through PI 3-kinase— and MAP-kinase—
dependent pathways in metabolic and vascular tissues,
resulting in improvement in metabolic and hemodynamic
phenotypes (Figure 9).

Insights From Therapeutic Interventions
in Humans
Insulin resistance and low plasma adiponectin levels charac-
teristic of metabolic disorders including diabetes and obesity
may play an important role in the pathogenesis of cardiovas-
cular diseases characterized by endothelial dysfunction (eg,
atherosclerosis, hypertension, and coronary heart disease).
Conversely, endothelial dysfunction may contribute signifi-
cantly to insulin resistance, as described in previous sections.
Thus, improving insulin resistance and raising plasma adi-
ponectin levels may be beneficial for the treatment of
cardiovascular diseases, and improving endothelial dysfunc-
tion may be beneficial for the treatment of metabolic disor-
ders. Results from therapeutic interventions using pharmaco-
logical or nonpharmacological therapies aimed at improving
insulin sensitivity and endothelial function in metabolic and
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Figure 9. SHRs serve as a model of the metabolic syndrome
with hypertension, hyperinsulinemia, insulin resistance, over-
weight, elevated ET-1 levels, and decreased adiponectin levels,
which are associated with decreased vasodilator response to
insulin due to decreased Pl 3-kinase tone and increased MAPK
tone.” After treatment of SHRs with rosiglitazone for 3 weeks,
blood pressure, insulin levels, and ET-1 levels were lower, and
adiponectin levels and insulin sensitivity were increased, with
increased vasodilator response to insulin, consistent with rebal-
ancing between PI 3-kinase and MAPK branches of insulin
signaling.58

cardiovascular diseases support a reciprocal relationship be-
tween insulin resistance and endothelial dysfunction that is
particularly relevant to treatment of the metabolic syndrome.

Pharmacological Therapies Targeting

Insulin Resistance

Thiazolidinediones (synthetic PPAR-y ligands) are insulin
sensitizers that also increase forearm blood flow in hu-
mans.!>® Metformin, another agent that improves insulin
sensitivity, also improves endothelium-dependent vasodila-
tion in patients with type 2 diabetes.'®® Thiazolidinediones
have antiatherogenic properties resulting in inhibition of
vascular smooth muscle cell proliferation and decreased
accumulation of lipids by macrophages, which may be
mediated by anti-inflammatory mechanisms.'¢!-162 Moreover,
administration of thiazolidinediones significantly increases
adiponectin expression and plasma levels in patients with
insulin resistance or type 2 diabetes without affecting body
weight.147.163.164 Adiponectin directly stimulates the produc-
tion of NO from vascular endothelium using a PI 3-kinase—
dependent signaling mechanism similar to that of insulin,
which may explain its effects, to oppose atherogenesis and
improve endothelial function.?! Taken together, these studies
suggest that drugs that improve insulin sensitivity may have
direct and indirect effects: improving endothelial function
and opposing atherogenesis through mechanisms that include
enhancing PI 3-kinase—dependent signaling in vascular en-
dothelium, increasing the expression and plasma concentra-
tions of adiponectin, and anti-inflammatory actions. Thus,
pharmacological therapies targeting insulin resistance may be
beneficial in the treatment of cardiovascular disorders asso-
ciated with insulin resistance. Indeed, therapy with thiazo-
lidinediones or metformin lowers blood pressure in insulin-
resistant patients who are also hypertensive!%-160 and reduces
cardiovascular events in randomized clinical trials.'®”

Pharmacological Therapies Targeting

Endothelial Dysfunction

Some drugs used for the treatment of hypertension also have
beneficial metabolic effects. ACE inhibitors reduce circulat-
ing angiotensin II levels, and ARBs block the actions of
angiotensin II. These effects lower blood pressure, improve
endothelial function, and reduce circulating markers of in-
flammation. In addition, treatment of patients with ACE
inhibitors or ARBs results in significant increases in adi-
ponectin levels and improvement in insulin sensitivity with-
out changing body mass index.!98-170 These beneficial meta-
bolic effects may be mediated, in part, by blocking inhibitory
cross-talk between angiotensin II receptor signaling and
insulin receptor signaling at the level of IRS-1 and PI
3-kinase.'*® ACE inhibitors and ARBs may also have direct
effects (eg, inducing PPAR-vy activity) that augment insulin-
stimulated glucose uptake and promote differentiation of
adipocytes.!”!172 Losartan (ARB) therapy significantly in-
creases plasma adiponectin levels and insulin sensitivity
relative to baseline measurements in hypercholesterolemic
hypertensive patients (Figure 10, panels A and B).'%® Of note,
these findings are significantly correlated with improvements
in endothelial function and inflammatory markers (Figure 10,
panels C and D). Similar findings are observed with ramipril
(ACE inhibitor) therapy in patients with type 2 diabetes.!7°
However, in both of these studies, treatment with simvastatin
(3-hydroxy-3-methylglutaryl [HMG]-CoA reductase inhibi-
tor) does not increase adiponectin levels or improve insulin
sensitivity. Nevertheless, simvastatin does improve endothe-
lial function and inflammatory markers in an additive manner
when combined with losartan or ramipril. This suggests that
only some mechanisms for improving endothelial function
have a beneficial effect on insulin sensitivity and adiponectin
levels. Recent clinical trials have demonstrated that using
ACE inhibitors or ARBs to treat patients with cardiovascular
disease significantly lowers the risk of developing type 2
diabetes.'39173 Conversely, using ACE inhibitors to treat
patients with type 2 diabetes significantly improves cardio-
vascular outcomes.!'”* Thus, therapeutic interventions with
ACE inhibitors and ARBs support the existence of reciprocal
relationships between endothelial dysfunction and insulin
resistance.

Fibrates are synthetic PPAR-« ligands that improve the
circulating lipoprotein profile, resulting in improved endothe-
lial function, reduced vascular inflammation, and reduction in
cardiovascular events in randomized clinical trials.!7>!7¢ In
one recent study, fenofibrate therapy (2 months) significantly
increased plasma adiponectin levels and insulin sensitivity
without changing body weight in patients with primary
hypertriglyceridemia.!”” These findings are significantly cor-
related with improvements in endothelial function and in-
flammatory markers. The fact that body weight did not
change raises the possibility that fenofibrate is directly
altering adiponectin levels independent of adiposity. Thus,
increased adiponectin levels may contribute to an improve-
ment in insulin sensitivity and endothelial function rather
than simply reflecting a change in adiposity. In another study,
fenofibrate therapy significantly increased plasma adiponec-
tin levels and insulin sensitivity without changing body
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Figure 10. Losartan therapy simultaneously improves adiponectin levels (A), insulin resistance (B), endothelial dysfunction (C), and
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weight in patients with combined hyperlipidemia.!”® Again,
these findings are significantly correlated with improvements
in endothelial function and inflammatory markers. However,
in that study,'’® treatment with atorvastatin (HMG-CoA
reductase inhibitor) did not increase adiponectin levels or
improve insulin sensitivity. Nevertheless, atorvastatin did
improve endothelial function and inflammatory markers in an
additive manner when combined with fenofibrate. Thus, in
that study,'’® beneficial effects of statins on endothelial
function and inflammatory markers did not translate to
improvements in metabolic parameters. Nevertheless, as with
ACE inhibitors and ARBs, therapeutic interventions with
fibrates suggest that some mechanisms for improving endo-
thelial function result in improved insulin sensitivity.

Nonpharmacological Lifestyle Interventions

Lifestyle modifications including diet, weight loss, and phys-
ical exercise decrease insulin resistance, increase adiponectin
levels, and improve endothelial dysfunction. Significant in-
creases in adiponectin levels and reduction in insulin resis-
tance have been observed in diabetic and nondiabetic patients
after 2 months of diet-induced weight loss.!”® Combining diet
control and physical exercise also increases plasma levels of
adiponectin. In obese insulin-resistant individuals stratified
by glucose tolerance after weight loss in response to a
combined hypocaloric diet and moderate physical activity,
adiponectin levels and insulin sensitivity increase signifi-
cantly, especially among diabetic subjects.'8® With respect to

vascular markers of inflammation and endothelial dysfunc-
tion, compared with matched subjects consuming a control
diet, patients with metabolic syndrome consuming a
Mediterranean-style diet have significantly reduced serum
concentrations of inflammatory markers as well as decreased
insulin resistance and improved endothelial function.'s! Sim-
ilarly, in a cohort of obese women, a 2-year lifestyle inter-
vention consisting of weight loss, physical exercise, and
Mediterranean-style diet resulted in decreased body mass
index, decreased inflammatory markers, and increased adi-
ponectin levels compared with results in matched control
subjects in a nonintervention group.'s? These studies suggest
that nonpharmacological lifestyle interventions that improve
metabolic and cardiovascular health may be efficacious, in
part, because of coupling between metabolic and vascular
physiology.

Conclusions
Many varieties of interacting and distinct molecular, cellular,
and physiological mechanisms in metabolic and vascular
tissues contribute to important reciprocal relationships be-
tween insulin resistance and endothelial dysfunction that
explain epidemiological data supporting associations and
increased risks linking metabolic and cardiovascular disor-
ders. Among these mechanisms, parallel insulin-signaling
pathways in metabolic and vascular tissues, pathway-specific
insulin resistance, cross-talk between inflammatory signaling
and insulin signaling, coupling of blood flow with glucose
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metabolism, pathophysiological cross-talk between metabolic
and vascular tissues, and shared stressors contributing to
insulin resistance and endothelial dysfunction are particularly
important. Thus, a combination of therapeutic approaches
that target multiple mechanisms is likely to have beneficial
effects on metabolic and cardiovascular health that go beyond
monotherapy with single agents.
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