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Hypertension and heart failure are worldwide health problems of ever-increasing proportions. A failure
of the heart, during either systolic and/or diastolic phases of the cardiac cycle, has its origins rooted in
an adverse structural, biochemical, and molecular remodelling of myocardium that involves its cellular
constituents, extracellular matrix, and intramural coronary vasculature. Herein we focus on the patho-
genic role of a dyshomeostasis of several macro- (i.e. Ca2þ and Mg2þ) and micronutrients (i.e. Zn2þ,
Se2þ, and vitamin D) in contributing to adverse remodelling of the myocardium and its failure as a pul-
satile muscular pump. An improved understanding of how these macro- and micronutrients account for
the causes and consequences of adverse myocardial remodelling carries with it the potential of identi-
fying new biomarkers predictive of risk, onset and progression, and response to intervention(s), which
could be monitored non-invasively and serially over time. Moreover, such incremental knowledge will
serve as the underpinning to the development of novel strategies aimed at preventing and/or regressing
the ongoing adverse remodelling of myocardium. The time is at hand to recognize the importance of
macro- and micronutrient dyshomeostasis in the evaluation and management of hypertension and
heart failure.
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1. Introduction

An adverse structural remodelling of myocardium, involving
cellular constituents of its muscular, intramural coronary
vascular, and interstitial compartments, contributes to the
heart’s failure as a muscular pump during either systolic or
diastolic phases of the cardiac cycle. The elucidation of mol-
ecular mechanisms involved in the pathogenesis of such
remodelling, including those contributing to its progressive
nature, are of considerable importance and the subject of
ongoing research. Herein, we provide our perspective as to
the role of macro- and micronutrient dyshomeostasis in pro-
moting such adverse remodelling.

Macronutrients are chemical elements essential to life in
large quantities. Calcium and magnesium are macronutri-
ents (or macrominerals) available in milligram quantities
and must be obtained from the environment. Micronutrients
are present in microgram quantities. They too are essential,
must be derived from external sources, and are integral
components of enzymes or coenzymes involved in chemical
reactions. Reduced circulating levels of such micronutrients

as Zn2þ and Se2þ, together with macronutrients, expressed
as ionized hypocalcaemia and hypomagnesaemia, are
found in patients with either hypertension or congestive
heart failure (CHF), irrespective of race, ethnicity, or the
aetiological origins of the failing heart.1–8 Increased excre-
tory losses of Ca2þ, Mg2þ, and Zn2þ accompany pharmaco-
logical agents commonly used in the management of
hypertension or CHF, including angiotensin-converting
enzyme inhibitors, angiotensin receptor blockers, and loop
diuretics.9 Symptomatic heart failure with reduced effort
tolerance will constrain such patients to a housebound life-
style deprived of sunlight. Thus, hypovitaminosis D is a
common finding in these patients.7,8,10–12 This is especially
the case in people with dark skin, where melanin is a
natural sunscreen mandating longer exposure to the UVB
component of sunlight for the skin to begin the process
leading to vitamin D steroidogenesis.13 Hence, a deficiency
of multiple macro- and micronutrients is an important
accompaniment of hypertension and CHF. Each has the
potential to adversely influence the structure of the failing
myocardium.

Herein, we focus on a dyshomeostasis of Ca2þ, Mg2þ,
Zn2þ, Se2þ, and vitamin D and their contribution to a remo-
delling of myocardial structure. Importantly, these nutrients
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are closely linked to one another and, therefore, no single
entity would appear more important than another. Intra-
cellular Ca2þ overloading, for example, is coupled to
increased intracellular Zn2þ entry, while Mg2þ is a physio-
logical antagonist of cellular and mitochondrial Ca2þ entry.
The significance of these divalent cations and vitamin D is
underscored by their pathophysiological roles in the appear-
ance of oxidative stress in diverse tissues, and to the overall
activity of antioxidant defenses found at these sites.

2. Polynutrient dyshomeostasis in
hypertension and congestive heart failure

The importance of oxidative stress in the remodelling of the
myocardium, where reactive oxygen (ROS) and nitrogen
species (RNS) overwhelm antioxidant defenses and contrib-
ute to its progressive nature, has come to light in recent
years. Moreover, the altered redox state appears concur-
rently in such diverse tissues as skin, muscle, peripheral
blood mononuclear cells (PBMCs), and blood, which under-
scores its systemic nature. Collectively, these findings call
into question the potential role of macro- and micronutri-
ents involving diverse tissues, including the heart. One
such overriding response in the pathogenesis of oxidative
stress in multiple tissues relates to intracellular Ca2þ over-
loading. This includes elevated cytosolic free [Ca2þ]i and
mitochondrial Ca2þ, where mitochondria are a major
storage site for Ca2þ and the most redox-active organelle.14

An activation of NADPH oxidase and elaboration of superox-
ide with intracellular Ca2þ overloading is mediated by such
calcitropic hormones as parathyroid hormone (PTH), angio-
tensin II, endothelin-1, and catecholamines. The importance
of endogenous antioxidant defenses also deserves to be
considered. This includes mitochondrial peroxiredoxin and
such metalloenzymes as superoxide dismutase (SOD) and
glutathione peroxidase, whose activities depend on Zn
and Se, respectively.

Both hypertension and CHF represent progressive systemic
illnesses15 whose major features include: (i) the presence
of oxidative stress that overwhelms antioxidant defenses
provided by Cu/Zn-SOD and Se-glutathione peroxidase, in
diverse tissues including the heart; (ii) an immunostimula-
tory state, where a dyshomeostasis of intracellular
Ca2þand Mg2þ contribute to endothelial and immune cell
activation to produce adhesion molecules, chemokines,
and proinflammatory cytokines that begets a vasculopathy
of coronary, renal, and mesenteric arterioles; and (iii) a
wasting of soft tissues, where Zn-dependent inhibition of
ubiquitin-proteasome-mediated protein degradation of skel-
etal muscle is compromised, and ongoing PTH-mediated
resorption of bone, eventuate in reduced lean body mass
and the wasting syndrome termed cardiac cachexia.

An ongoing structural remodelling of myocardium accom-
panies this systemic illness. This includes a concentration-
dependent oxidative stress-induced loss of cardiomyocytes,
initially via apoptotic and ultimately via necrotic death
pathways. Its extracellular matrix (ECM), that includes a
fibrillar collagen scaffolding, is also involved. In both post-
mortem and explanted failing human hearts harvested
at the time of cardiac transplantation, ECM remodelling
has been described in morphological terms as an
adverse accumulation of fibrous tissue presenting as a

perivascular/interstitial fibrosis, and as microscopic scarring
replacing necrotic cardiomyocytes, and where cardiomyo-
cytes, surrounded by fibrous tissue, become atrophic.16,17

A degradation of the collagenous scaffolding, induced by
its proteolytic degradation and mediated by Zn-dependent
matrix metalloproteinases, is an important pathogenic
feature of the dilated thin-walled myocardium and is associ-
ated with muscle fibre slippage.18–20

Thus, factors contributing to the causes and consequences
of the systemic illness that accompanies hypertension and
CHF are simultaneously operative in promoting the heart’s
ongoing structural remodelling. It is from this molecular per-
spective the present report has been structured. It will focus
on the role of several macro- and micronutrients and their
contribution to the adverse structural remodelling of myo-
cardium found in the failing heart associated with hyperten-
sive heart disease and the clinical syndrome of CHF.

3. Macro- and micronutrients and myocardial
remodelling

3.1 Calcium dyshomeostasis

Intracellular Ca2þ overloading, including cytosolic and mito-
chondrial, occurs as a pathophysiological response integral
to the induction of oxidative stress and the subsequent
appearance of cell injury. Such a scenario occurs with
ischaemia/reperfusion (I/R) injury, catecholamine-induced
cardiomyocyte necrosis, the secondary hyperparathyroidism
(SHPT) that accompanies (see Table 1) either aldosteronism,
chronic renal failure, or high dietary Naþ, and the cardio-
myopathy that appears in association with Duchenne muscu-
lar dystrophy. An altered redox state, where ROS and RNS
overwhelm endogenous antioxidant defenses, leads to a
concentration-dependent loss of cardiomyocytes. Apoptotic
cell death is not accompanied by an inflammatory cell
response and fibroblast-related repair and, therefore, a
replacement fibrosis, or scarring, does not appear. At
higher [Ca2þ]i concentrations, ROS and RNS lead to necrotic
cell death, which is followed by invading inflammatory
cells and fibroblasts, and consequent replacement fibrosis.
Microscopic scarring, in this case, appears at these sites
and is left as a footprint of prior necrosis. In the setting
where a circulating substance is involved in promoting
intracellular Ca2þ overloading with oxidative stress and
cardiomyocyte necrosis, such as accompanies elevations in
plasma PTH or catecholamines, myocardial scarring is
present in both the right and left heart.

Table 1 Factors contributing to the appearance of secondary
hyperparathyroidism in patients with hypertension or congestive
heart failure

Hypovitaminosis D
Reduced dietary Ca2þ

Increased dietary Naþ

Loop diuretic
Chronic renal failure
Aldosteronism
Hypoalbuminaemia
Hypocalcaemia
Hypomagnesaemia
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In aldosteronism, an integral feature of CHF and some
forms of hypertension, intracellular Ca2þ overloading of
diverse tissues occurs invariably and is PTH-mediated. As
shown in Figure 1, elevations in circulating PTH occur in
response to ionized hypocalcaemia and hypomagnesaemia
caused by the heightened urinary and faecal excretion of
Ca2þ and Mg2þ that accompanies aldosterone/1% NaCl treat-
ment (ALDOST).21–27 SHPT is invoked during ALDOST to
restore extracellular Ca2þ and Mg2þ homeostasis through
bone resorption,28 and increased Ca2þ resorption from the
kidney and gastrointestinal tract. The important role of
PTH-mediated intracellular Ca2þ overloading is further evi-
denced by the hypertension, left ventricular hypertrophy,
and adverse structural remodelling of myocardium, as well
as myocardial and valvular calcification, arrhythmia and
abnormal conduction, and altered vasomotor reactivity with
vascular remodelling found in primary hyperparathyroid-
ism.29,30 A high-Naþ diet (8%), which suppresses plasma aldos-
terone levels, is calciuric in rats and man, and like ALDOST it
also leads to SHPT with PTH-mediated bone resorption and
intracellular Ca2þ overloading (Figure 1).27,31,32 Low-renin
hypertension is also accompanied by ionized hypocalcaemia,
increased plasma PTH with elevations in platelet [Ca2þ]i, and
a favourable reduction in elevated blood pressure to dietary
Ca2þ supplement or Ca2þ channel blocker.1,2,33–35

Oxidative stress is induced in diverse tissues during SHPT
and is expressed by increased plasma 8-isoprostane, acti-
vation of NADPH oxidase with increased superoxide pro-
duction, increased tissue levels of 3-nitrotyrosine, a stable

product of peroxynitrite, formed by the reaction between
short-lived superoxide and nitric oxide, and activation of
redox-sensitive nuclear transcription factor (NF)-kB with a
proinflammatory gene cascade it encodes.36–40 PTH recep-
tors are found in various tissues, including heart, skeletal
muscle, and immune cells. In the case of lymphocytes and
monocytes, a proinflammatory phenotype accompanies the
PTH-mediated intracellular Ca2þ overloading, and their acti-
vation leads to an invasion of the perivascular space of intra-
myocardial coronary and renal vasculature and mesenteric
circulation. The increase in biologically active cytosolic
free [Ca2þ]i is coupled with their increased production of
H2O2 and altered transcriptome.41,42 Upregulated gene
expression in these cells includes antioxidant defenses,
adhesion molecules, and proinflammatory chemokines and
cytokines. This vasculitis, together with enhanced fibroblast
collagen synthesis,43 leads to perivascular fibrosis. If sus-
tained, the fibrous tissue response extends into the contigu-
ous interstitial space resulting in interstitial fibrosis.
Interventions which interfere with this pathophysiological
scenario attenuates the appearance of microscopic scarring,
and perivascular/interstitial fibrosis of the right and left
atria and ventricles.44 These cardioprotective measures
include: cotreatment with spironolactone, an aldosterone
receptor antagonist, that prevents the increased urinary
and faecal losses of Ca2þ and Mg2þ 21,39,45; parathyroidect-
omy performed prior to initiating ALDOST;46,47 cotreatment
with either a calcium channel blocker or an exogenous anti-
oxidant, or with an inhibitor of NADPH oxidase or an SOD
mimetic.39,48–51

Thus, Ca2þ dyshomeostasis, together with PTH-mediated
intracellular Ca2þ overloading and induction of oxidative
stress, is integral to the adverse structural remodelling of
myocardium that includes cardiomyocyte necrosis with scar-
ring and appearance of an immunostimulatory state leading
to vasculitis, and ultimately, a perivascular fibrosis of the
intramural coronary circulation extending into the contigu-
ous interstitial space. Iterations in Ca2þ balance, however,
rarely occur in isolation. Mg2þ is a natural antagonist to
intracellular Ca2þ entry through L-type Ca2þ channels and
mitochondrial permeability transition pore.52 The contri-
bution of hypomagnesaemia to cardiac remodelling has
been studied in rodents using a Mg2þ-deficient diet.

3.2 Magnesium dyshomeostasis

Hypomagnesaemia occurs in patients with diabetes, meta-
bolic syndrome, alcoholism, HIV, those receiving Mg-wasting
drugs, and critically ill cancer patients.53 Hypomagnesaemia
has been reported in 63% of intensive care patients and up to
45% of patients with acute myocardial infarction and is
associated with increased mortality.54 Hereditary hypomag-
nesaemia can cause a progressive dilated cardiomyopathy
and heart failure.55

Severe dietary deficiency of Mg2þ (MgD) in animal models
causes myocardial necrosis, neuromuscular hyperexcitabil-
ity, arrhythmias, increased oxidative stress, and enhanced
myocardial susceptibility to I/R stress.56 Circulating levels
of proinflammatory neuropeptides, substance P (SP), and
calcitonin gene-related peptide are increased in MgD due
to their release from sensory-motor neurons (Figure 2).
These neuropeptides may trigger inflammatory/oxidative
events which promote cardiomyopathy.57 Increases in

Figure 1 In aldosteronism (ALDOST), where plasma aldosterone levels are
inappropriately elevated relative to dietary Naþ intake, marked excretory
losses of Ca2þ and Mg2þ lead to a fall in their plasma ionized concentrations.
Reduced [Ca2þ]o and [Mg2þ]o are, respectively, major and minor stimuli to the
parathyroid glands’ secretion of parathyroid hormone (PTH), with secondary
hyperparathyroidism (SHPT) accounting for bone resorption in an attempt to
restore the homeostasis of these divalent cations. In what is coined as a
calcium paradox, elevations in plasma PTH promote intracellular Ca2þ over-
loading and induction of oxidative stress. Reactive oxygen species (ROS)
and peroxynitrite (OONO2) contribute to intracellular signalling that, in a
concentration-dependent manner, eventuates in cell activation (e.g. periph-
eral blood mononuclear cells, PBMC) and the expression of apoptotic and
necrotic cell death pathways in cardiomyocytes. Urinary and faecal losses
of Zn are likewise increased during ALDOST (data not shown). A high (8%)
Naþ diet, which suppresses plasma aldosterone levels, also leads to SHPT
because of increased excretory losses of Ca2þ.
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PGE2, circulating histamine, and hypersensitivity to applied
catecholamine stress also occur. Importantly, elevations of
plasma SP preceded that of nitric oxide (NO) in severe
MgD rats and this was concurrent with an indicator of sys-
temic oxidative stress, red blood cell glutathione (GSH)
loss.58 L-NAME treatment attenuated this GSH depletion,
suggesting a prooxidant role for NO during MgD. The
N-methyl-D-aspartate (NMDA) receptor complex is an
important mediator of neuropeptide release and this recep-
tor is blocked by Mg2þ in a voltage-dependent manner. Pre-
treatment of MgD rats with MK-801, an NMDA receptor
blocker, prevented SP loss from dorsal root ganglia59 and
myocardial ICAM expression was decreased along with
CD11b-positive inflammatory cells.59 SP also alters the func-
tional state of endothelial cells, mast cells, macrophages,
polymorphonuclear leukocytes (PMNs), and T-lymphocytes.
MgD resulted in the elevation of T-cell-derived IFN-g which
was blocked by an SP receptor (NK-1) antagonist and MgD
increased the number of circulating PMNs, which displayed
significant increases (up to 10-fold) in basal superoxide pro-
duction indicating systemic oxidative stress; SP receptor
blockade also attenuated endogenous PMN activation to
reduce superoxide generation.60,61

The gut is also rich in neuropeptides, and during MgD
severe mucosal inflammation occurs with pronounced PMN
infiltration along with enhanced gut permeability that may
release endotoxin or lipopolysaccharide (LPS) into circula-
tion.62 LPS alone induces systemic elevations of TNF-a,
IL-1a, and IL-6, which mediate chronic cardiac dysfunction,
and it can also stimulate TNF-a production by adult rat
cardiomyocytes by activating LPS receptors (CD14),63

which are upregulated in MgD cardiac tissue.64 Thus, the
substantial increases in plasma TNF-a, IL-1, and IL-6 in
MgD rats are due, in part, to SP-mediated gut permeability
that increases circulating LPS. SP receptor blockade in
MgD rats significantly lowers plasma TNF-a levels in plasma
and cardiac tissue,57 implicating a combined SP and
LPS-mediated proinflammatory cascade. TNF-a may be
elevated in chronic heart failure along with IL-6. Cardiac-
specific overexpression of TNF-a resulted in a heart failure
phenotype in mice that exhibited left ventricular dysfunc-
tion and cardiac remodelling.65 TNF-a is a major contributor
to the cardiomyopathy of MgD since it was markedly
elevated in both the plasma and myocardial lesions after
only 3 weeks of MgD.66

Thus, both a blockade of SP release from neural tissue and
inhibition of the SP receptor significantly reduce the pro-
inflammatory state in the hearts of MgD animals. The pro-
oxidant elevations of free radicals in the I/R rat heart
were also inhibited by pretreatment with SP receptor
blockers. Additional studies with antioxidant drugs also
showed cardioprotection, since treatment of MgD rats with
sustained-release pellets containing alpha-tocopherol, pro-
bucol, D-propranolol (non-beta-blocking form), and epicap-
topril (the SH-donor stereoisomer of captopril) significantly
reduced focal myocardial lesions.

In summary, SP can produce free radicals directly (super-
oxide and NO) and indirectly (by stimulating cytokine
release). Blockade at each level of this neurogenic inflam-
matory cascade (the SP receptor, the NMDA receptor, and
antioxidant treatment) prevented these prooxidant effects
in MgD animals. Overall, these studies of cardiomyopathy
due to MgD reveal striking parallels with multiple clinical
disorders where hypomagnesaemia is present. Translation
of therapies that are effective in these experimental MgD
models to clinical applications represent a challenge for
future studies.

3.3 Zinc dyshomeostasis

Zinc is an essential micronutrient integral to the activity of
various metalloenzymes that include angiotensin-converting
enzyme and matrix metalloproteinases.67,68 Hypozincaemia
accompanies bodily injury including acute myocardial
infarction.69–71 Zinc deficiency with hypozincaemia,
coupled with an associated impairment in Zn-dependent
metalloenzymes, has been reported in the elderly, in
patients with hypertension, and in those with CHF having
dilated cardiomyopathy.3–6,8,72–74

In the case of aldosteronism, a fall in plasma Zn is related
to its increased urinary and faecal excretion and to its prefer-
ential translocation to sites of injury, including the heart,
where it contributes to tissue repair and to antioxidant
defenses provided by increased Cu/Zn-SOD activity.75–77

Further evidence in favour of a Zn deficiency during ALDOST
includes: reduced plasma Cu/Zn-SOD activity; a fall in bone
Zn that occurs in response to PTH-mediated bone resorption;
thymic atrophy; and a failure to gain weight.75,76

The translocation of Zn to tissues, where it serves as an
antioxidant, is intrinsically coupled to intracellular Ca2þ

overloading that acts as a prooxidant. The relative prepon-
derance of prooxidant:antioxidant determines the heart’s
redox state and fate of cardiomyocytes. A Zn supplement
in the setting of aldosteronism serves to attenuate scarring
in keeping with reduced oxidative stress-induced cardio-
myocyte necrosis. It does not prevent coronary vasculitis
and subsequent perivascular fibrosis since the associated
ionized hypocalcaemia and SHPT are not corrected by
ZnSO4 cotreatment.78 However, Zn supplementation has
proved efficacious in preventing a diabetic cardiomyopathy
in streptozocin-treated rodents,79 and is cardioprotective
in the Ca2þ overloading associated with I/R injury, each of
which are not associated with SHPT.80

3.4 Selenium dyshomeostasis

Selenium is another essential micronutrient. Relevant to
cardiac remodelling, the main selenoproteins are gluta-
thione peroxidase (GSHPx) and thioredoxin reductase.81

Figure 2 Dietary Mg2þ deficiency is accompanied by hypomagnesaemia and
release of substance P and cytokines, with ROS and RNS generation leading to
oxidative stress, subsequent tissue injury, and inflammatory cell activation.
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A Se-deficient diet, as occurs with the consumption of veg-
etables grown in the Se-poor soil in the Keshan Province of
China, is associated with the appearance of a DCM in local
children known as Keshan’s disease, which is often revers-
ible with Se supplementation.82 Se deficiency has reap-
peared in western medicine secondary to gastrointestinal
disorders interfering with or contributing to the loss of
dietary Se (e.g. Crohn’s disease), bariatric surgery for
weight reduction, and long-term parenteral nutrition (TPN)
devoid of Se. Several cases of life-threatening heart
failure and DCM have been reported in patients on home
TPN, or after marked weight loss following bariatric
surgery.82 Reductions in serum Se, albeit of uncertain
origins, have been found in African-American patients who
reside in Memphis, Tennessee, and have a DCM. Tennessee
soil is not known to be Se-deficient.8

Morphological features of this Se-deficient DCM include a
widespread myocytolysis with replacement fibrosis
scattered throughout the right and left ventricles and
atria.83–85 In addition, diminished Se concentrations and
reduced activities of GSHPx are found in blood, heart,
liver, kidney, and skeletal muscle.83,86 Fuyu87 has suggested
that Keshan’s disease is a mitochondrial cardiomyopathy
with enlarged, swollen, and dysfunctional mitochondria
having reduced oxidative phosphorylation and GSHPx
activity, coupled with increased Ca2þ content. Furthermore,
transgenic mice lacking functional mitochondrial thiore-
doxin reductase have been shown to develop a fatal form
of cardiomyopathy.88 Further investigation into the role of
Se deficiency in the appearance of a DCM is warranted.

3.5 Copper dyshomeostasis

Other micronutrients, such as Cu2þ and iron can also con-
tribute to an adverse remodelling of myocardial structure.
However, a discussion of the adverse consequences of iron
deficiency or iron overload is beyond the scope of this
brief review.

In both rodents or pigs, a deficiency of Cu2þ has been
found to be accompanied by a remodelling of myocardium.
This includes the appearance of a dilated, thin-walled cardi-
omyopathy and even its rupture.89 At an ultrastructural
level, non-aligned myofibrils with disrupted Z bands are
accompanied by increased volume density of mitochondria
with disarranged cristae.90–92 A repletion of dietary Cu2þ is
accompanied by a reversal of these iterations in structure.
The role of Cu in regulating the activity of lysyl oxidase,
integral to promoting the crosslinking of collagen and
elastin, and Cu/Zn-superoxide dismutase, an antioxidant
defense mechanism, is thought to contribute to the slippage
of muscle fibres, a weakening of myocardium, and unbridled
oxidative stress that includes structural–functional impair-
ments of its mitochondria.

3.6 Vitamin D dyshomeostasis

Low vitamin D status affects myocardial structure and
function and this relationship has clinical relevance.11,93,94

Vitamin D3 deficiency and reduced levels of the active
vitamin D metabolite, 1,25-dihydroxyvitamin D3

(1,25(OH)2D3) have been associated with the aetiology and
pathogenesis of CHF.11 More recently a study of 18 225
men enrolled in the Health Professionals Follow-Up Study
reported that men with low vitamin D status had 2.5 times

the risk of having a myocardial infarction.95 Zittermann
et al.96 have recently reported that low serum calcitriol
levels are independently associated with poor clinical
outcome in patients with CHF awaiting cardiac transplan-
tation. In these patients, whose lifestyle is often con-
strained to housebound because of symptomatic heart
failure, marked reductions in plasma 25(OH)D levels are
often present, together with elevations in serum PTH in
keeping with SHPT.97,98 In the absence of sunlight therapy,
addressing the optimal intake of vitamin D to correct the
profound levels of vitamin D deficiency found in these
patients becomes a major challenge.99

Prior to these clinical observations, studies from the
Simpson lab demonstrated that vitamin D3 deficiency
alters myocardial function, morphology, and ECM.100–102

Recently, it was shown that ablation of the vitamin D recep-
tor (VDR) signalling system results in profound changes in
heart structure103 and that the VDR knockout (VDRKO)
mouse phenotype is characterized by cardiac hypertrophy
and fibrosis with increased interstitial collagen depo-
sition.104 Animal studies have revealed that 1,25(OH)2D3

affects two processes central to cardiomyocyte function.
First, 1,25(OH)2D3 was shown to alter Ca2þ handling result-
ing in increased sensitivity of heart to contractile stimuli,
and second it influences remodelling of heart and increases
heart size and collagen content.11,93,103–105

Analysis of the promoter region of the collagen-I (COL1A1)
gene shows sequence homology to a VDR responsive
element.105,106 Moreover, matrix metalloproteinase-13
(MMP-13) has been shown to be transcriptionally upregulated
by 1,25(OH)2D3 in osteoblasts.107 Thus, vitamin D status has
been linked to the regulation of ECM formation, turnover,
and integrity in target tissues, including heart. Fibrosis is a
classic feature of cardiac hypertrophy characterized by the
turnover of ECM and the accumulation of collagen, particu-
larly, collagen type I.108 The collagen content of the heart
is determined by a balance between the synthesis and degra-
dation of collagen, which has been shown to be consistently
increased in the models of heart disease.109 MMPs and
tissue inhibitors of metalloproteinases (TIMPs) contribute to
tissue remodelling in a number of disease states, including
heart disease. ADAMTS-1, like MMP-2, possesses gelatinolytic
activity, thus degrades type I collagen.110 A recent report
showed greater accumulation of total collagen, fibrosis, and
COL1A1 protein levels in the hypertrophic hearts of VDRKO
mice.104 This observation was interpreted as being a result
of VDR ablation affecting COL1A1 stability through an
alteration of MMP, TIMP, and ADAMTS expression in heart
and associated cells. It has been shown that MMPs have a
predominant role in hydrolyzing ECM proteins and these
enzymes have been proposed to mediate collagen degra-
dation leading to left ventricular dilation, and ultimately
to CHF.111 The complex nature of heart failure-related
remodelling has been addressed in recent studies showing
that caveolin-1 null-mutant mice have increased MMP-2
activity,112 and angiotensin-converting enzyme inhibitors
reduce MMP-2 activity.113 Furthermore, left ventricular
hypertrophy has been associated with increased MMP-2
activity, and its transition to heart failure with increased
TIMP-2 levels and collagen deposition.114

In an effort to better understand VDR’s role in ventricular
remodelling and fibrosis, microarray and real-time RT–PCR
were used to identify possible ECM genes that are
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differentially expressed in VDRKO mice (unpublished obser-
vations). Subsequently, levels of the identified ECM gene
products were analysed by immunoblotting. In these
studies, it was found that hypertrophic VDRKO hearts had
increased MMP-2 expression at both the transcriptional and
translational levels. Increased TIMP-2 mRNA and protein
expression, with a concomitant decrease in TIMP-1 and
TIMP-3 gene expression in the hearts of female VDRKO
mice relative to the WT mice, was also observed. Moreover,
there was a significant increase in VDRKO/WT ratio for
TIMP-2 protein expression in female mice when compared
with the male VDRKO mice, indicative of a lesser degree
of heart remodelling in females. This approach ultimately
revealed that a member of ADAMTS subfamily, ADAMTS-1,
is upregulated both at transcriptional and protein levels in
VDRKO mice when compared with control wild type (WT)
mice. Overall, it was observed that expression of ADAMTS,
collagen, MMP, and TIMP forms are regulated in the
cascade of events leading to ventricular remodelling
in vivo in the VDRKO mouse.

Studies have shown a relationship between the robust
increase in TIMPs and degree of left ventricular hypertrophy
in patients with heart failure.115 It has been reported
that TIMP-1 and TIMP-2 form a complex with MMP-1 and
MMP-2, respectively.116 However, the modulation of TIMPs
expression was reported to be independent of MMP
expression.117 It has been shown that the ratios, specifically
of TIMP-2/MMP-2, were significantly increased in the left
ventricular remodelling, and suggest that upregulation
of TIMP-2 expression might be independent of MMP-2
expression in ventricular remodelling, and ultimately
cardiac hypertrophy. Studies suggest that the observed
decrease in remodelling in female mice involves an
increased relative expression of TIMP-2 in female VDRKO
vs. WT mice, in contrast to the increase in male VDRKO
TIMP-2 levels. The mechanism of regulation of TIMP-2 at
present is unclear. However, a transcriptional action of
vitamin D on TIMP-2 expression is supported by the presence
of an AP-1 element in the promoter of its gene.118

Cardiomyocyte Ca2þ handling and contraction requires
PKC activation, and thus PKC activity could modulate
transcriptional regulation of such AP-1 elements.119

Increased MMP-2 activity is found in the fibrotic hearts of
the VDRKO mice when compared with WT mice.104 The
increase in MMP-2 activity, and its expression in the VDRKO
mice, may be induced by the alterations in the myocardial
environment that take place in response to hypertrophic
stimuli, such as lack of cardiac VDR signalling and/or
release of inflammatory mediators. An increase in MMP-2
protein expression, with concomitant increase of TIMP-2,
is associated with the enhanced COL1A1 levels and fibrosis
and cardiac hypertrophy in VDRKO mice. TIMPs bind to the
active site of MMP, blocking their access for degradation of
collagen substrates.119 In addition, ADAMTS-1 is partially
inhibited by TIMP-2 and TIMP-3.120,121

Thus, vitamin D levels play an important role in maintain-
ing myocardial viability and ECM integrity by regulating the
dynamics (activity, production, and expression) between
MMPs, ADAMTSs, and TIMPs in heart remodelling. These find-
ings demonstrate a collective role for ADAMTS-1, COL1A1,
MMP-2, and its endogenous inhibitors (TIMPs) in the
cardiac hypertrophy and fibrosis that accompanies vitamin
D deficiency101,102 and VDR ablation.104

4. Summary and conclusions

The heart’s failure as a muscular pump has its origins rooted
in an adverse structural, biochemical, and molecular remo-
delling of myocardium that includes its cardiomyocytes,
ECM, and intramural coronary vasculature. The ongoing
nature of such remodelling contributes to the progressive
nature of heart failure.

Contributory to such pathological remodelling, irrespec-
tive of the aetiological origins of heart failure, is a dysho-
meostasis of such macro- and micronutrients as Ca2þ,
Mg2þ, Zn2þ, Se2þ, and vitamin D, which are predominantly
derived from external sources and often inextricably depen-
dent on one another (e.g. hypovitaminosis D begets SHPT
with PTH-mediated [Ca2þ]i overloading). Insufficient
dietary intake, inadequate sunlight exposure, excessive
excretory losses, and/or a preferential translocation of
cations from the intravascular compartment to injured
tissues, where they contribute to wound healing, lead to dis-
turbances in their homeostasis. The resulting nutrient imbal-
ance is the basis for a common pathophysiological response,
i.e. the induction of oxidative stress. ROS and RNS over-
whelm endogenous antioxidant defenses, and lead to unto-
ward intracellular signalling that accounts for reduced
cardiomyocyte survival, an immunostimulatory state with
activated inflammatory cells contributing to a proinflamma-
tory vascular phenotype, and the appearance of fibrous
tissue (or fibrosis). The replacement of any one of these
nutrients alone will not suffice and would not prove to be
completely cardioprotective. Polynutrient supplements are
therefore essential to correct the dyshomeostasis of these
interconnected nutrients and to prevent adverse myocardial
remodelling.

An improved understanding of how these macro- and
micronutrients account for the causes and consequences of
adverse myocardial remodelling carries with it the potential
of identifying new biomarkers predictive of risk, onset and
progression, and response to intervention(s), which can be
monitored non-invasively and serially over time. Moreover,
such incremental knowledge will serve as the underpinning
to the development of novel strategies aimed at preventing
and/or regressing the ongoing adverse remodelling of myo-
cardium. The time is at hand and propitious to recognize
the importance of macro- and micronutrient dyshomeostasis
in the evaluation of hypertension and CHF.
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