Heart Failure Reviews
© The Author(s) 2009
10.1007/s10741-009-9146-x

Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart

Stephan E. Lehnart^{1, 3 ,} Lars S. Maier² and Gerd Hasenfuss²

- (1) Department of Cardiology & Pulmonology, Center of Molecular Cardiology, UMG Heart Center, Georg August University Medical School, Robert-Koch-Str. 40, 37075 Goettingen, Germany
- (2) Department of Cardiology & Pulmonology, UMG Heart Center, Georg August University Medical School, Robert-Koch-Str. 40, 37075 Goettingen, Germany
- (3) Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 W. Lombard St., Baltimore, MD 21201, USA

Stephan E. Lehnart

Email: slehnart@med.uni-goettingen.de

Published online: 12 May 2009

Abstract Heart failure (HF) is characterized by molecular and cellular defects which jointly contribute to decreased cardiac pump function. During the development of the initial cardiac damage which leads to HF, adaptive responses activate physiological countermeasures to overcome depressed cardiac function and to maintain blood supply to vital organs in demand of nutrients. However, during the chronic course of most HF syndromes, these compensatory mechanisms are sustained beyond months and contribute to progressive maladaptive remodeling of the heart which is associated with a worse outcome. Of pathophysiological significance are mechanisms which directly control cardiac contractile function including ion- and receptor-mediated intracellular signaling pathways. Importantly, signaling cascades of stress adaptation such as intracellular calcium (Ca²⁺) and 3'-5'-cyclic adenosine monophosphate (cAMP) become dysregulated in HF directly contributing to adverse cardiac remodeling and depression of systolic and diastolic function. Here, we provide an update about Ca²⁺ and cAMP dependent signaling changes in HF, how these changes affect cardiac function, and novel therapeutic strategies which directly address the signaling defects.

Keywords Heart failure - Arrhythmia - Calcium - Sodium - Inotropy - Catecholamine - Beta receptor - Ryanodine receptor - Phosphodiesterase - Therapy

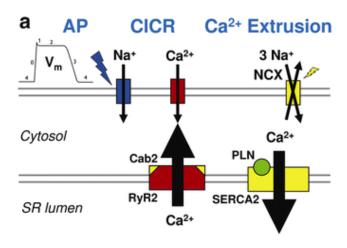
Introduction

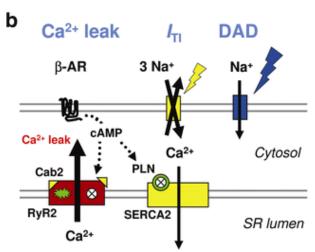
Congestive heart failure (HF) is a condition in which heart function is insufficient to supply the organs with enough blood nutrients. The consequence is a progressive cascade of changes that lead to fatigue, shortness of breath and, ultimately, death. Much progress has been made in understanding the molecular and cellular processes that contribute to HF. Despite these insights and modern treatment options, chronic HF remains a major cause of illness and death and generally has a poor prognosis. Because HF is more common with increasing age, the number of affected individuals is rising rapidly with the ageing population. Thus, new treatments directed at critical disease mechanisms are needed to halt and reverse the devastating consequences of this disease.

Here, we focus on chronic HF and our understanding of molecular disease mechanisms related to Ca²⁺ metabolism. Many insights into HF stem from the elucidation of intracellular signaling pathways that mediate cardiac performance as well as contribute to cardiac dysregulation under disease conditions. The clinically critical transition occurs when the heart can no longer provide adequate blood flow and/or pressure to meet the body's demands. Consequently, physiological countermeasures include the stimulation of neurohormonal outflow and the activation of intracellular signaling cascades. These acute responses may initially offset reduced cardiac performance. However, sustained stimulation of the heart by cellular stress signaling cascades ultimately increases the likelihood of organ failure and contributes to a worse prognosis.

Cardiac remodeling and changes in intracellular signaling

HF is characterized by chronic activation of neuro-hormonal pathways representing a compensatory response to overcome depressed cardiac function. However, over weeks to months, a chronic hyperadrenergic state ensues with elevated plasma catecholamine levels, which contribute to maladaptive cardiac chamber remodeling, progressive deterioration of pump function, and deadly arrhythmias. Due to the chronic hyperadrenergic state, desensitization of β-adrenoreceptors (β-ARs) and reduced global intracellular cAMP synthesis occur in the failing heart [\underline{I} – \underline{J}]. However, stimulation of β-ARs and other signaling pathways is maintained and continues to affect the remodeled cells and proteins.


A broad range of molecular pathways are involved in the development of HF, and there is likely to be substantial overlap between these pathways. Typically, cell-surface receptors are activated by ligands leading to the activation of stress-response protein kinases and phosphatases such as cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), protein kinase D (PKD), mitogen activated kinases (MAPKs), Ca²⁺ calmodulin-dependent kinase II (CaMKII), and calcineurin. Chronic activation of these stress pathways and their cellular effectors including transcription factors, which target multiple genes, result in changes in cellular structure, function, and overall regulation of the heart, collectively referred to as cardiac remodeling. Additionally, an imbalance between cell survival and cell death pathways results in a low rate of cardiomyocyte apoptosis which may contribute to cell loss in HF [4, 5]. A different form of cell death, necrosis, may contribute to HF, for example through mitochondrial damage mediated by increased cytosolic Ca²⁺ concentrations in cardiomyocytes.


HF causes changes in intracellular calcium signals

HF is a syndrome which results from different insults, typically following myocardial infarction (MI), viral myocarditis, toxic cardiomyopathy, or other less frequent causes such as genetic defects. However, following chronic remodeling of the heart, cardiac phenotypes occurring from different causes show important similarities, including depressed intracellular Ca²⁺ metabolism.

 ${
m Ca}^{2+}$ is the central regulator of excitation-contraction (EC) coupling, which controls muscle contraction during each heartbeat. EC coupling is activated by an incoming action potential wavefront and the subsequent opening of voltage-dependent L-type ${
m Ca}^{2+}$ channels (Cav1.2). A relatively small ${
m Ca}^{2+}$ influx current ($I_{
m Ca}$) triggers a quantitatively larger intracellular ${
m Ca}^{2+}$ release from sarcoplasmic reticulum (SR)

Ca²⁺ stores through ryanodine receptor (RyR2) Ca²⁺ release channels by the process of Ca²⁺ induced Ca²⁺ release (CICR) (Fig. 1a). CICR is followed by re-uptake of Ca²⁺ into the SR by Ca²⁺ pumps (SERCA2) and removal of Ca²⁺ from the cytosol by the Na⁺/Ca²⁺ exchanger (NCX) (Fig. 1a). The activity of SERCA2 is regulated by phospholamban (PLN). Unphosphorylated PLN inhibits SERCA2 activity, and phosphorylation by PKA and/or CaMKII increases SR Ca²⁺ uptake. Similarly, RyR2 phosphorylation by PKA and/or CaMKII increases SR Ca²⁺ release [6, 7]. Within the approximately 12 nm wide compartment between the plasma membrane and the terminal SR membrane (junctional SR) where SR Ca²⁺ release occurs, CICR is organized within Ca²⁺ release units representing functional microdomains between T-tubuli and the terminal SR (junctional subspace). Strikingly, all components essential for CICR, including the SR Ca²⁺ release microdomain, the Ca²⁺ storage organelles, and the Ca²⁺ transport proteins themselves (Table 1), become significantly altered during remodeling of the failing heart [8].

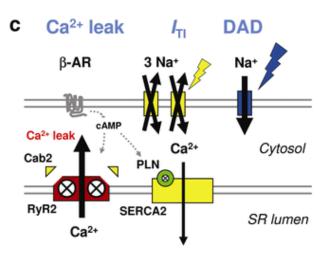


Fig. 1 a Physiology of excitation-contraction (EC) coupling. An incoming action potential (AP) rapidly depolarizes the

cell membrane potential (V_m) in phase 0 through opening of voltage-dependent Na⁺ channels (Na_V1.5). Subsequently, EC coupling is initiated through the opening of voltage-dependent L-type Ca²⁺ channels (Ca_V1.2) and the plasma membrane Ca²⁺ influx current (I_{Ca}). I_{Ca} activates ryanodine receptors (RyR2s) and intracellular Ca²⁺ release from sarcoplasmic reticulum (SR) stores, also known as Ca²⁺ induced Ca²⁺ release (CICR). CICR is followed by extrusion of Ca²⁺ from the cytosol into the SR by Ca²⁺ pumps (SERCA2) and to the extracellular compartment by the Na⁺/Ca²⁺ exchanger (NCX) operating in its forward mode (3 Na⁺ in for each Ca²⁺ out), which creates an electrogenic inward current. SR Ca2+ leak is inhibited by the calstabin2 (Cab2) subunit which stabilizes the RyR2 closed state. The SERCA2 pump rate is inhibited by the phospholamban (PLN) subunit in its dephosphorylated state. Ca²⁺ release and uptake occur cyclically during each heart beat and represent 60-90% of Ca^{2+} signaling during EC coupling depending on the species studied. **b** EC coupling abnormalities in CPVT. RyR2 missense mutations significantly increase the propensity for intracellular Ca^{2+} leak in resting cardiomyocytes (during diastole) with filled SR Ca^{2+} stores. Stimulation of β -adrenergic receptors (β -ARs) during stress adaptation results in RyR2 and PLN phosphorylation by PKA (indicated by) which increases SR Ca2+ release and uptake, respectively. However, RyR2 mutations (as indicated by green star) in the PKA phosphorylated Ca2+ release channel lead to partial calstabin2 depletion, a significant gain-of-function defect of RyR2, and intracellular Ca²⁺ leak. RyR2 Ca²⁺ leak activates depolarizing transient inward currents (ITI) supposedly through abnormal forward mode NCX activity. If ITI currents reach a critical threshold of membrane potential instability in phase 4 of the cardiac AP, Na+ channels are activated leading to delayed after depolarizations (DADs) which underly triggered activity. c EC coupling abnormalities in HF. HF is a chronic hyperadrenergic state which results in downregulation of β-AR signaling and reduced intracellular cAMP synthesis. However, maintained hyperadrenergic stimulation of β-ARs during HF results in chronic RyR2 PKA hyperphosphorylation (indicated by large), depletion of the stabilizing calstabin2 subunits as well as other components of the channel complex including phosphodiesterase 4D3 (PDE4D3). PDE4D3 depletion causes a chronically reduced cAMP hydrolysis in the channel complex and contributes to RyR2 PKA hyperphosphorylation induced intracellular Ca²⁺ leak. On the other hand, PLN is chronically PKA hypophosphorylated (indicated by small) creating constitutively inhibited state of SERCA2 and reduced SR Ca²⁺ uptake. Additionally, NCX expression is significantly increased leading to abnormally increased Ca2+ extrusion to the extracellular side and depletion of intracellular Ca²⁺ stores. Despite Ca²⁺ store depletion, DADs and triggered activity are frequent in HF possibly due to increased SR Ca²⁺ leak and proarrhythmogenic inward NCX and late I_{Na,L} currents

Table 1 Major calcium handling abnormalities in the failing heart

Gene	Physiological function	Pathophysiology in HF	Genetic syndromes
NCV1	Na ⁺ /Ca ²⁺ exchange	I _{NCX} gain-of-function	n/a
NCX1, SLC8A1	Forward mode	Contractile dysfunction	
	Reverse mode	Pro-arrhythmogenic	
	Ryanodine receptor isoform 2	Intracellular Ca ²⁺ leak	CPVT (ARVC2 ?)
RyR2	Intracellular Ca ²⁺ release	Contractile dysfunction	Missense mutations HF, SSS, AVND
	Contractile activation in systole	Pro-arrhythmogenic	Deletion mutation
	SERCA2a pump	Loss-of-function	Darier disease
ATP2A2	Intracellular SR Ca ²⁺ uptake	Depressed SR Ca ²⁺ uptake	
	Muscle relaxation in diastole	Depressed contraction and relaxation	
DIM	Phospholamban	Gain-of-function	Dilated cardiomyopathy, early onset
PLN	Constitutive inhibition of SERCA2a pump function	Increase in ratio of PLN:SERCA2a results in decreased SERCA2a function	Missense and deletion mutations

Gene	Physiological function	Pathophysiology in HF	Genetic syndromes
	increases SR (a lintake and	PLN hypophosphorylation is associated with decreased SR Ca ²⁺ uptake and contractile dysfunction	

ARVC2 arrhythmogenic right ventricular cardiomyopathy type 2, AVND atrioventricular node dysfunction, CPVT catecholaminergic polymorphic ventricular tachycardia, SSS sick sinus node, n/a not available

Milestones toward imaging of intracellular calcium metabolism

The study of intracellular Ca^{2+} concentration, $[Ca^{2+}]_i$, in heart function requires to monitor the dynamics of $[Ca^{2+}]_i$ in living cells. However, the free $[Ca^{2+}]_i$ is heterogeneous even in resting cells and ranges from nanomolar to micromolar concentrations in the cytoplasm and SR Ca^{2+} stores, respectively [9]. During electrical cell activation or stimulation by hormone receptors, the resultant changes in the cytoplasmic and organellar Ca^{2+} concentrations occur as spatially and temporally defined patterns within cellular microdomains [10]. Thus, understanding of changes in Ca^{2+} signaling during HF has been largely dependent on methods to monitor Ca^{2+} concentrations in living cells.

 Ca^{2+} indicators form selective and reversible complexes with free Ca^{2+} ions. The physicochemical differences of the free and bound indicator allow for the fluorescence detection of changes in $\Delta[Ca^{2+}]_i$ usually by the absorbance and/or emission of light [11]. Thus, the concentration of free Ca^{2+} is measured indirectly by monitoring the amount of the free versus the Ca^{2+} complexed indicator. The chemiluminescent photoprotein aequorin purified from jellyfish can be microinjected into tissues or cells and applied as a Ca^{2+} indicator [12]. Moreover, recombinant aequorin can be targeted to specific subcellular compartments through signal sequences [13]. However, recombinant aequorin emits a relatively small signal upon Ca^{2+} binding which compromises the measurement of Ca^{2+} concentrations in smaller cells at the cost of low time resolution [14]. Tsien and colleagues synthesized the first, rationally designed, fluorescent Ca^{2+} indicator for intracellular use based on the Ca^{2+} -chelator EGTA [15]. The widespread and successful use of fluorescent polycarboxylate dyes started with the introduction of lipophilic acetoxymethyl (AM) ester derivatives allowing efficient and stable indicator loading of living cells without potentially damaging pipette injection techniques [16].

Global intracellular calcium abnormalities in heart failure

Pioneering studies used injection of the aequorin Ca^{2+} sensor into physiologically contracting muscle preparations from explanted human hearts. Aequorin loaded muscles from failing hearts showed a reduced capacity to restore nanomolar resting Ca^{2+} levels during diastole in conjunction with depressed muscle contraction and relaxation [17]. Different from healthy heart muscle and pronounced at faster rates, the aequorin injected failing heart muscle showed a reduced amplitude of the intracellular Ca^{2+} transient $(\Delta[Ca^{2+}]_i)$ together with diminished force production [18]. Additionally, myothermal measurements in isolated muscle strip preparations from failing and non-failing human hearts showed that the thermal equivalent of total Ca^{2+} cycling is reduced significantly in HF [19]. The rate of heat production was significantly reduced indicating reduced SR Ca^{2+} uptake [19].

Consistent with multicellular muscle preparations, dissociated single cardiomyocytes from failing human hearts displayed a prolonged relaxation, depressed systolic contraction, and elevated diastolic tension [20]. Contractile dysfunction of failing cardiomyocytes occurred in conjunction with abnormal [Ca²⁺]_i metabolism including reduced SR Ca²⁺ release, elevated resting [Ca²⁺]_i, and a reduced rate of Ca²⁺ removal [21, 22]. For late stage HF it is now accepted that cardiomyocytes and/or muscle preparations from explanted patient or animal hearts exhibit a reduced Δ [Ca²⁺]_i amplitude and a slowed decay of the global intracellular Ca²⁺ transient [17, 23–25]. Thus, depressed contractility in HF appears to be associated with cellular signaling abnormalities at the level of the global intracellular Ca²⁺ transient.

Notably, the combination of an abnormal intracellular Ca^{2+} transient together with depressed contractile function all occur from quite different forms of cardiac insults. Such phenotypic changes have been documented in dilated human cardiomyopathy [23, 26], hypertension induced hypertrophy HF in salt-sensitive rats [24], rats with myocardial infarction [27], mice with muscle LIM protein knockout [28], mice with replication-restricted full-length Coxsackievirus B3 overexpression and myocarditis [29], and mice overexpressing either the catalytic protein kinase A (PKA)-C α subunit [30] or the cytosolic CaMKII δ_c splice variant [31]. Thus, different HF models appear to agree that qualitatively similar changes of the intracellular Ca^{2+} transient and subsequent alterations of EC coupling and contractile dysfunction occur.

Local intracellular calcium abnormalities in heart failure

While cardiac contraction and relaxation cycles are controlled by a cell-wide (global) signaling event, the Ca^{2+} transient, intracellular Ca^{2+} release occurs within local (subcellular) Ca^{2+} release units as evidenced by elementary Ca^{2+} release events measured with bright fluorescent polycarboxylate dyes [8, 32]. How do local, elementary Ca^{2+} release events, known as Ca^{2+} sparks, modulate the intracellular Ca^{2+} transient? At a diastolic $[Ca^{2+}]_i$ of approximately 100 nM, Ca^{2+} sparks occur at a very low rate (100 s⁻¹ cell⁻¹). When the AP occurs, Ca^{2+} influx causes a large increase in cytosolic $[Ca^{2+}]_i$ within the tight junctional subspace (Fig. 1a). A raise of junctional $[Ca^{2+}]_i$ above nanomolar concentrations increases the spark rate 10^3 to 10^6 fold. Therefore, the I Ca influx current becomes amplified by a dramatic increase in Ca^{2+} spark rate during CICR. This implies that modulation of the Ca^{2+} spark rate may control the Ca^{2+} transient amplitude and cardiac force development (inotropy). Indeed, imaging experiments of subcellular Ca^{2+} signaling have provided evidence that β -adrenergic stimulation increases local Ca^{2+} release possibly due to RyR2 phosphorylation [33].

An important advance why changes in the intracellular Ca^{2+} transient occur in HF come from combined voltage-clamp and Ca^{2+} spark imaging experiments to assess if changes in EC coupling are responsible for depressed cardiac function. A rat model of hypertension induced HF with preserved Ca^{2+} influx current (I Ca) density showed that the ability of any given I Ca to activate SR Ca^{2+} sparks ($\Delta[Ca^{2+}]_i$) was significantly decreased [24]. Thus, HF is accompanied by a decrease in the gain of EC coupling ($\Delta[Ca^{2+}]_i/I_{Ca}$) which has been confirmed in rats with myocardial infarction [27], dogs with pacing-induced HF [34], mice with viral myocarditis [29], and muscle LIM protein knockout mice [35]. Additionally, structural changes of the T-tubules, SR storage organelles, and/or the architecture of the junctional microdomain cleft are all likely contributors to defective EC coupling by altering the geometry of the Ca^{2+} release unit potentially resulting in orphaned RyR2 release channels and/or abnormal CICR [36, 37].

Abnormal calcium release triggers fatal arrhythmias

Sudden unexpected death accounts for up to 50% of all deaths in HF patients and is most often due to

ventricular tachyarrhythmias [38]. Both reentry and focal mechanisms have been documented in patients with ischemic cardiomyopathy [39]. At the cellular level, arrhythmias have been associated with Ca^{2+} induced electrical abnormalities including SR Ca^{2+} overload leading to intracellular Ca^{2+} waves and Ca^{2+} activated transient inward current (I_{TI}) [40–42]. In digitalis treated cells, I_{TI} was shown to initiate delayed after depolarizations (DADs) [43]. Association of SR Ca^{2+} leak with activation of a depolarizing Na^+/Ca^{2+} exchange current is a likely mechanism of arrhythmogenic I_{TI} in HF [44–46].

Genetic linkage and translational studies have significantly advanced our understanding about specific Ca²⁺ dependent arrhythmia mechanisms (Table 1). For instance, RyR2 missense mutations may cause stress-induced syncope and sudden death in a syndrome called Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) [47, 48]. Consistent with a β-AR and cAMP mediated stress mechanism, PKA phosphorylated RyR2 channels containing CPVT mutations showed a significant gain-of-function defect and a Ca²⁺ leak mediated arrhythmia trigger mechanism [49, 50]. Indeed, cardiomyocytes from knockin mice with the RyR2-R2474S mutation identified earlier in CPVT patients [47] showed Ca²⁺ leak mediated *I* TI currents and DADs during stimulation with catecholamines (Fig. 1b) [51]. While we have to anticipate additional mechanisms of Ca²⁺ leak in HF, mechanistic linkage of CPVT mutant RyR2 dependent Ca²⁺ leak to arrhythmia initiation [51] provides a specific mechanism of Ca²⁺ dependent arrhythmia initiation which can be targeted and tested by a novel class of RyR2 stabilizing compounds [51] (Table 2).

Table 2 Clinical and novel drug rationales to treat HF

Target	Drug	Advantage	Disadvantage			
NCX transporter						
Forward mode	SEA0400	Reduced infarct size	OTA			
Reverse mode	SEA0400, KB-R7943	n/a	Negative inotropic?			
RyR2 channel						
Phosphorylation	β-Blockers	Survival, progression	Indirect mechanism			
Filospiloryiation	ACE inhibitors	Survival, progression	Indirect mechanism			
Pore block	Tetracaine	n/a	OTA; n/a			
Stabilization	JTV519	Specificity	OTA			
Stabilization	S107	Specificity	n/a			
SERCA2 pump						
Stimulation	Gingerol	Specificity	Toxicity; n/a			
Overexpression	AAV-SERCA2a	Specificity	Gene therapy			

OTA off-target activity, n/a not available

Storage organelle and calcium transport dysfunction

 ${\rm Ca}^{2+}$ is the central intracellular messenger which links an incoming action potential to myofilament activation and cardiac contraction. Apart from EC coupling, $[{\rm Ca}^{2+}]_i$ is subject to physiological stress adaptation and a higher systolic $\Delta[{\rm Ca}^{2+}]_i$ increases force development and cardiac output (inotropy) [33]. Following the realization that SR ${\rm Ca}^{2+}$ uptake might be depressed in failing cardiomyocytes, the intracellular storage organelles and SR ${\rm Ca}^{2+}$ content became a focus of intense research interest.

HF has been associated with decreased function of different Ca^{2+} transport mechanisms (Table 1) including the sarcoendoplasmic reticulum (SR) Ca^{2+} ATPase (SERCA2) [52, 53] and with increased function of the Na^+/Ca^{2+} exchanger (NCX) [54]. The ratio of PLN:SERCA2 is a critical determinant of cardiac Ca^{2+}

homeostasis, and increases in this ratio have been suggested to contribute to increased diastolic Ca^{2+} levels and cardiac dysfunction [53, 55, 56]. On the other hand, due to the changes in the relative expression and function of NCX and SERCA2, a net shift toward increased Ca^{2+} extrusion to the extracellular space and a net decrease in SR Ca^{2+} uptake occurs (Fig. 1c). Therefore, intracellular Ca^{2+} stores may develop a relatively Ca^{2+} depleted state which has been confirmed experimentally in cardiomyocytes from dogs and humans with HF [26, 34]. Decreased SR Ca^{2+} load may result in a decreased amplitude and slower upstroke of the intracellular Ca^{2+} transient. Since $\Delta[Ca^{2+}]_i$ is an important mediator of cardiac force development, a decreased $\Delta[Ca^{2+}]_i$ due to decreased SR load may result in decreased force development. However, SR Ca^{2+} store depletion in HF does not necessarily prevent an increase in Ca^{2+} spark frequency [31] likely due to chronically increased RyR2 phosphorylation [57] and consistent with an increased propensity for Ca^{2+} induced arrhythmias in HF.

Molecular mechanisms of depressed SR calcium uptake

Decreased SERCA2 function has been associated with changes in the regulatory subunit PLN (Fig. $\underline{1}$ c). PLN is a phosphoprotein which inhibits SERCA2 in its dephosphorylated state, while phosphorylation of PLN during β -AR stimulation relieves this inhibitory effect. The regulatory role of PLN in myocardial contractility has been established through the generation and characterization of genetically altered mouse models, which revealed a correlation between PLN expression and contractile function $\underline{[58-60]}$. PLN phosphorylation in HF is chronically decreased (PLN *hypo*phosphorylation) which may directly contribute to depressed SR Ca²⁺ uptake $\underline{[61]}$. Chronic PLN hypophosphorylation can be predicted to compromise cardiac stress adaptation mediated by cAMP and PKA. Overexpression of the cardiac SERCA2a isoform or the constitutively PKA phosphorylated PLN-Ser¹⁶ improved function in rats following aortic banding-induced HF $\underline{[62]}$ and decreased arrhythmia susceptibility following ischemia-reperfusion cardiomyopathy in pigs $\underline{[63]}$.

Phospholamban is potently inhibited by phosphatase 1 (PP1), which in turn is inhibited by phosphatase inhibitor I-1 following PKA phosphorylation and I-1 activation. Consistent with this mechanism, overexpression of an activated I-1 form in mice protects the animals from HF development [64]. Moreover, the identification of PLN mutations in patients with dilated cardiomyopathy has strengthened its critical role in cardiac function. Thus, inhibition of PLN activity and restoration of SR Ca²⁺ cycling were suggested to hold promise for treating heart failure [65].

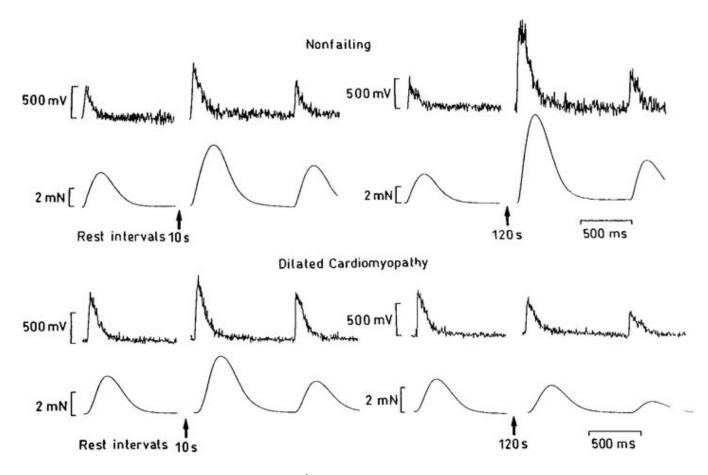
Molecular mechanisms of intracellular calcium leak

In samples from patients and animals with HF, RyR2 is chronically PKA *hyper*phosphorylated contributing to intracellular Ca²⁺ leak and remodeling of the macromolecular channel complex [7, 66, 67]. If the hyperadrenergic state in HF leads to secondary downregulation of β-adrenergic signaling and globally reduced intracellular cAMP synthesis, which molecular mechanism maintains RyR2 PKA hyperphosphorylation and intracellular Ca²⁺ leak? During HF, phosphatases (PP1 and PP2A) are depleted from the RyR2 complex which may contribute to a reduced rate of RyR2 dephosphorylation [61, 66]. In human HF, the cAMP-specific phosphodiesterase isoform PDE4D3 was found to be decreased in the RyR2 complex paralleled by a decrease in cAMP hydrolyzing activity [57]. Thus, PKA hyperphosphorylation and calstabin2 depletion may both contribute to chronic RyR2 activation and intracellular Ca²⁺ leak (Fig. 1c). Indeed, single RyR2 channels from human failing hearts showed an increased open probability consistent with intracellular Ca²⁺ leak [66].

Using site-directed mutagenesis of RyR2, a specific Ca^{2+} /calmodulin-dependent protein kinase II (CaMKII) phosphorylation site (Ser²⁸¹⁴) distinct from the PKA phosphorylation site (Ser²⁸⁰⁸) has been

identified [6]. CaMKII phosphorylation increased RyR2 Ca^{2+} sensitivity and open probability. Since CaMKII was activated by higher cardiac pacing rates, RyR2 CaMKII phosphorylation may contribute to enhanced CICR and enhanced contractility at higher heart rates. However, the rate-dependent increase in RyR2 phosphorylation by CaMKII as seen in sham-operated, healthy rat hearts was compromised in rat hearts with HF [6]. Transgenic mice overexpressing the cytosolic CaMKII δ_c isoform develop cardiac hypertrophy, HF, and intracellular Ca^{2+} leak [68]. Acute overexpression of CaMKII δ_c in cardiomyocytes resulted in significant SR Ca^{2+} leak without changes in contractile function [69]. Adenoviral CaMKII overexpression was not associated with calstabin2 dissociation from RyR2 [69] confirming earlier results [6]. On the other hand, PKA phosphorylation of RyR2 resulted in depletion of the stabilizing calstabin2 subunit [6], and decreased calstabin2 levels have been linked to Ca^{2+} triggered arrhythmias in the structurally normal heart [49]. Disruption of RyR2 PKA phosphorylation in Ser2808Ala knockin mice with myocardial infarct induced HF has provided evidence that PKA hyperphosphorylation induced SR Ca^{2+} leak may directly contribute to HF progression [70]. However, the significance of concomitant PKA and/or CaMKII RyR2 phosphorylation in Ca^{2+} dysregulation during HF has not been addressed conclusively.

Altered sodium handling in heart failure


Intracellular Na^+ and Ca^{2+} concentrations are intricately coupled through the NCX current. In addition, Na^+ influx through sarcolemmal Nav1.5 channels contributes to intracellular $[Na^+]_i$ homeostasis (Fig. 1a). Studies about $[Na^+]_i$ in human myocardium showed a stimulation rate dependent increase in $[Na^+]_i$ [71, 72]. For any given stimulation rate, human end-stage failing myocardium showed a shift toward higher intracellular $[Na^+]_i$ [71]. In a rabbit HF model with elevated $[Na^+]_i$, the function of the Na^+/K^+ -ATPase function was found normal [73]. A potential role of altered Na^+ channel inactivation and a significantly increased late $I_{Na,L}$ in HF as a cause of intracellular $[Na^+]_i$ overload has been documented in animal models of HF and human failing myocardium [74, 75]. Slow pacing of failing cardiomyocytes with increased $[Na^+]_i$ may enhance Ca^{2+} influx from the extracellular side through reverse mode NCX contributing to increased SR Ca^{2+} load and force development. Indeed, at higher pacing rates failing cardiomyocytes with high $[Na^+]_i$ are prone to diastolic Ca^{2+} overload and contractile dysfunction. Interestingly, pharmacological inhibition of $I_{Na,L}$ was found to improve diastolic dysfunction in failing human myocardium [76]. Additionally, increased late $I_{Na,L}$ may result in Ca^{2+} induced electrical cardiomyocyte dysfunction as shown in SCN5A- ΔKPQ knockin mice resembling the Long-QT3 syndrome [77].

Altered force frequency relation in the failing human heart

Pathophysiological consequences of altered EC coupling have an immediate impact on cardiac stress adaptation during higher heart rates. The force–frequency relation (FFR) or staircase phenomenon of healthy human myocardium and within physiological limits describes a heart rate dependent increase in contractile force and cardiac output. However, in failing human hearts or isolated muscle preparations, the frequency-dependent potentiation of contractile force is blunted or, even worse, inversed [78]. Alteration of the FFR in the failing human heart has been accepted as a functional milestone which may partially explain the decreased exercise capacity of symptomatic HF patients.

Using aequorin Ca^{2+} measurements it has been shown that a positive FFR in normal healthy myocardium is associated with a positive $\Delta[Ca^{2+}]_i$ transient amplitude–frequency relation, and vice versa, a negative FFR in the failing myocardium is associated with an inverted $\Delta[Ca^{2+}]_i$ –frequency relation [18]. Alterations of the frequency response of contractile performance have been confirmed in vivo in HF patients [79]. A

different experimental protocol which is thought to enable increased Ca^{2+} accumulation into the SR stores in diastole, uses post-rest pacing which typically produces an increase in developed force in healthy myocardium also referred to as 'post-rest potentiation'. However, alterations in post-rest potentiation that may underlie reduced stress adaptation and the FFR inversion have been associated with a blunted post-rest $\Delta[Ca^{2+}]_i$ increase of SR Ca^{2+} content (Fig. 2) [80]. While in healthy human myocardium a pronounced upregulation of SR Ca^{2+} content occurs at higher heart rates, failing human myocardium shows a blunted regulation of SR Ca^{2+} content [26]. Therefore, the chronic hyperadrenergic state and associated higher heart rates in HF patients may create an increased risk for Ca^{2+} induced cardiac dysfunction and arrhythmias. Accordingly, novel therapeutic strategies have successfully used pharmacological heart rate reduction in HF patients to improve prognostic outcome [81].

Fig. 2 Representative traces of aequorin-based Ca²⁺ signals and corresponding isometric forces from human nonfailing (*top*) and failing (*bottom*) myocardial muscle preparations. *Upper panel*: Nonfailing myocardium shows post-rest potentiation of the intracellular Ca²⁺ transient and force development which increases from 10 to 120 s rest period. *Lower panel*: Failing myocardium shows depressed post-rest intracellular Ca²⁺ transient and force development after 120 s rest. Steady-state pre-rest signals are shown on the left of each trace; first and second post-rest signals are shown afterwards; post-rest signals represent 10 s (*left*) and 120 s (*right*), dimensions as indicated. Reproduced with permission from the Journal of Clinical Investigation (Pieske et al. [*80*])

Therapeutic rationales to modulate calcium handling in heart failure

Several therapeutic rationales exist which aim to correct known molecular Ca^{2+} signaling abnormalities in HF as summarized in Table 2. Among these strategies, NCX blockers may have therapeutic utility if mode-selective block can be established and/or risks for disturbing intracellular Ca^{2+} metabolism can be avoided. Partial inhibition of NCX by SEA-0400 in MLP^{-/-} knockout cardiomyocytes with heart failure

showed a net gain of $[Ca^{2+}]_i$ and SR load but no improvement in contractility whereas cardiomyocytes from mice with aortic-banding induced hypertrophy and HF showed improved contractile function [82]. Further development of NCX blockers for HF will depend on the critical assessment of the potential benefits of NCX reduction versus effects on $[Ca^{2+}]_i$ by refining mode dependence and/or including additional targeting strategies.

Some traditional ion channel blockers like tetracaine inhibit ion permeation through RyR2 channels, however, lack of specificity and potential side effects on contractile function indicate significant limitations toward therapeutic applicability [83, 84]. Recently, the efficacy of novel RyR2 channel stabilizing drugs of the 1,4-benzothiazepine class (JTV519 or K201) which stabilize the RyR2 closed state but do not block ion permeation has been established in animal models of heart failure where they inhibit progression of cardiac remodeling and dysfunction [57, 85, 86]. RyR2 stabilizing compounds with high specificity and cardiac activity have been developed [51] and their efficacy as potential HF treatment is under investigation. Additionally, β -blockers and angiotensin-II receptor blockers have been associated with beneficial effects on RyR2 channel dysfunction in HF through mechanisms which indirectly prevent excess post-translational modification of RyR2, e.g. by PKA hyperphosphorylation or nitrosylation [87–89].

Adeno-associated viruses (AAVs) are currently best suited for myocardial gene delivery due to minimal pathogenicity and several serotypes exhibit tropism for the heart. Following identification and comprehensive characterization of SERCA2a as a potential therapeutic target in HF, cardiac gene therapy trials using replication-deficient viral vectors (AAV-SERCA2a) have been approved by the US Food and Drug Administration and are under review with the UK regulatory authorities for clinical trials [90].

Summary and future perspectives

HF is characterized by chronic maladaptive changes and a poor prognosis. Chronic activation of intracellular signaling pathways mediates structural and functional remodeling of the failing heart. Changes in EC coupling at the level of local and global Ca²⁺ signals represent a key mechanism of contractile depression and arrhythmia propensity. It has become increasingly clear that cardiac remodeling in HF occurs within cytosolic Ca²⁺ signaling microdomains. Translational approaches about the local and global Ca²⁺ signaling mechanisms, remodeling mechanisms, and related disease processes will be of key importance to develop novel and specific therapeutic rationales. We anticipate that Ca²⁺ imaging techniques will significantly increase our understanding of the cardiac pathophysiology underlying HF and boost development of novel therapeutic strategies in the future.

Acknowledgments This work was supported by funds from the Deutsche Forschungsgemeinschaft (DFG) Grant KFO 155 (to S.E.L.: TP4 LE 1313/2-1; to L.S.M.: TP5; to G.H.: TP1), the American Heart Association (to S.E.L.), the Alfried Krupp von Bohlen and Halbach Foundation (to S.E.L.), by the European Commission FP6 project grant EUGeneHeart (to G.H.). L.S.M. is funded by the DFG Heisenberg Program, the German Society for Cardiology, and by the Fondation Leducq. The authors apologize to all colleagues if their work could not be represented adequately in this review due to space limitations.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

 Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59:297–309

PubMed ChemPort

 Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

PubMed ChemPort

3. Feldman MD, Copelas L, Gwathmey JK, Phillips P, Warren SE, Schoen FJ, Grossman W, Morgan JP (1987)
Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 75:331–339

PubMed ChemPort

4. Foo RS, Mani K, Kitsis RN (2005) Death begets failure in the heart. J Clin Invest 115:565–571.

doi: 10.1172/JCI200524569

PubMed ChemPort

Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504
 PubMed ChemPort

6. Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70.

doi:10.1161/01.RES.0000125626.33738.E2

Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376. doi: 10.1016/S0092-8674(00)80847-8
 PubMed ChemPort

Guatimosim S, Dilly K, Santana LF, Saleet Jafri M, Sobie EA, Lederer WJ (2002) Local Ca(2+) signaling and EC coupling in heart: Ca(2+) sparks and the regulation of the [Ca(2+)](i) transient. J Mol Cell Cardiol 34:941–950. doi:10.1006/jmcc.2002.2032

cross ref PubMed ChemPort

 Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

PubMed ChemPort

 Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21. doi:10.1038/35036035

crossref PubMed ChemPort

11. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586. doi:10.1038/nrm1153

crossref PubMed ChemPort

 Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239. doi:10.1002/jcp.1030590302

ChemPort ChemPort

13. Rizzuto R, Brini M, Pozzan T (1994) Targeting recombinant aequorin to specific intracellular organelles. Methods Cell Biol 40:339–358. doi:10.1016/S0091-679X(08)61121-8

PubMed ChemPort

14.	Rutter GA, Burnett P, Rizzuto R, Brini M, Murgia M, Pozzan T, Tavare JM, Denton RM (1996) Subcellular
	imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate
	dehydrogenase activity. Proc Natl Acad Sci USA 93:5489-5494. doi:10.1073/pnas.93.11.5489
	cross ref PubMed ChemPort

15. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404. doi: 10.1021/bi00552a018
PubMed ChemPort

16. Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528. doi:10.1038/290527a0
PubMed ChemPort

Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76
 PubMed ChemPort

Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G (1995)
 Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92:1169–1178

 PubMed ChemPort

 Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR (1992) Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 70:1225–1232
 PubMed ChemPort

20. Harding SE, Jones SM, O'Gara P, del Monte F, Vescovo G, Poole-Wilson PA (1992) Isolated ventricular myocytes from failing and non-failing human heart; the relation of age and clinical status of patients to isoproterenol response. J Mol Cell Cardiol 24:549–564. doi:10.1016/0022-2828(92)91843-T
PubMed ChemPort

21. Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK (1998) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30:1929–1937. doi:10.1006/jmcc.1998.0748

ChemPort ChemPort

 Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP (1990) Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 85:1599–1613. doi:10.1172/JCI114611

crossref PubMed ChemPort

23. Schlotthauer K, Schattmann J, Bers DM, Maier LS, Schutt U, Minami K, Just H, Hasenfuss G, Pieske B (1998) Frequency-dependent changes in contribution of SR Ca2+ to Ca2+ transients in failing human myocardium assessed with ryanodine. J Mol Cell Cardiol 30:1285–1294. doi:10.1006/jmcc.1998.0690 PubMed ChemPort

24. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806. doi:10.1126/science.276.5313.800

PubMed ChemPort

25. Beuckelmann DJ, Nabauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055

PubMed ChemPort

26.	Pieske B, N	∕laier LS, B	ers DM, Hasenfus	s G (1999) C	Ca2+ handling	and sarcoplasmi	c reticulum	Ca2+	content in
	isolated fail	ing and non	failing human myd	cardium. Cir	c Res 85:38-	46			
	PubMed	ChemPort							

27. Gomez AM, Guatimosim S, Dilly KW, Vassort G, Lederer WJ (2001) Heart failure after myocardial infarction: altered excitation-contraction coupling. Circulation 104:688–693. doi:10.1161/hc3201.092285

PubMed ChemPort

Esposito G, Santana LF, Dilly K, Cruz JD, Mao L, Lederer WJ, Rockman HA (2000) Cellular and functional defects in a mouse model of heart failure. Am J Physiol Heart Circ Physiol 279:H3101–H3112
 PubMed ChemPort

29. Wessely R, Klingel K, Santana LF, Dalton N, Hongo M, Jonathan Lederer W, Kandolf R, Knowlton KU (1998) Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy. J Clin Invest 102:1444–1453. doi:10.1172/JCI1972 PubMed ChemPort

30. Antos CL, Frey N, Marx SO, Reiken S, Gaburjakova M, Richardson JA, Marks AR, Olson EN (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ Res 89:997–1004. doi:10.1161/hh2301.100003

Crosseef PubMed ChemPort

31. Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911. doi:10.1161/01.RES.0000069685.20258.F1

PubMed ChemPort

32. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744. doi:10.1126/science.8235594

PubMed ChemPort

33. Lindegger N, Niggli E (2005) Paradoxical SR Ca2+ release in guinea-pig cardiac myocytes after beta-adrenergic stimulation revealed by two-photon photolysis of caged Ca2+. J Physiol 565:801–813. doi:10.1113/jphysiol.2005.084376

PubMed ChemPort

34. Hobai IA, O'Rourke B (2001) Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation 103:1577–1584
PubMed ChemPort

35. Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403. doi:10.1016/S0092-8674(00)81878-4

PubMed ChemPort

36. Schaper J, Froede R, Hein S, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514
PubMed ChemPort

37. Song LS, Sobie EA, McCulle S, Lederer WJ, Balke CW, Cheng H (2006) Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci USA 103:4305–4310. doi:10.1073/pnas.0509324103

PubMed ChemPort

oo. Ommin vv, maloon i	<i>i</i> (2002) 30	idu e n cardiac	ueatti iti ullatet	i cardiomyopamy–	-therapeutic optior	is. neiz
27:750–759. doi: <u>10</u>	.1007/s000	59-002-2425-	<u>-0</u>			

SpringerLink PubMed

39. Pogwizd SM, Hoyt RH, Saffitz JE, Corr PB, Cox JL, Cain ME (1992) Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation 86:1872–1887

PubMed ChemPort

40. Kass RS, Tsien RW, Weingart R (1978) Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J Physiol 281:209–226

PubMed ChemPort

41. Kass RS, Lederer WJ, Tsien RW, Weingart R (1978) Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. J Physiol 281:187–208

PubMed ChemPort

42. Berlin JR, Cannell MB, Lederer WJ (1989) Cellular origins of the transient inward current in cardiac myocytes. Role of fluctuations and waves of elevated intracellular calcium. Circ Res 65:115–126

PubMed ChemPort

43. Lederer WJ, Tsien RW (1976) Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J Physiol 263:73–100

PubMed ChemPort

44. Clusin WT (1983) Caffeine induces a transient inward current in cultured cardiac cells. Nature 301:248–250.

45. Lipp P, Pott L (1988) Voltage dependence of sodium-calcium exchange current in guinea-pig atrial myocytes determined by means of an inhibitor. J Physiol 403:355–366

PubMed ChemPort

46. Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019

PubMed ChemPort

47. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino VV, Danieli GA (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200

PubMed ChemPort

48. Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, Donarum EA, Marino M, Tiso N, Viitasalo M, Toivonen L, Stephan DA, Kontula K (2001) Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103:485–490

PubMed ChemPort

49. Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D'Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840. doi:10.1016/S0092-8674(03)00434-3

Cross PubMed ChemPort

50. Lehnart SE, Wehrens XH, Laitinen PJ, Reiken SR, Deng SX, Cheng Z, Landry DW, Kontula K, Swan H, Marks AR (2004) Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 109:3208–3214. doi:10.1161/01.CIR.0000132472.98675.EC

51. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118:2230–2245

PubMed ChemPort

52. Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309. doi:10.1172/JCI114429

ChemPort

53. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784

PubMed ChemPort

54. Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, Just H, Holtz J, Drexler H (1994) Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res 75:443–453
PubMed ChemPort

55. Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW 2nd, Walsh RA, Kranias EG (1996) Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97:533–539. doi:10.1172/JCI118446
PubMed ChemPort

56. Dash R, Frank KF, Carr AN, Moravec CS, Kranias EG (2001) Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium. J Mol Cell Cardiol 33:1345–1353. doi:10.1006/jmcc.2001.1394

ChemPort

57. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123:25–35. doi:10.1016/j.cell.2005.07.030

PubMed ChemPort

58. Luo W, Wolska BM, Grupp IL, Harrer JM, Haghighi K, Ferguson DG, Slack JP, Grupp G, Doetschman T, Solaro RJ, Kranias EG (1996) Phospholamban gene dosage effects in the mammalian heart. Circ Res 78:839–847

PubMed ChemPort

59. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy K, Doetschmann T, Kranias EG (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75:401–409
PubMed ChemPort

60. Lorenz JN, Kranias EG (1997) Regulatory effects of phospholamban on cardiac function in intact mice. Am J Physiol 273:H2826–H2831

PubMed ChemPort

61. Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D'Armiento J, Burkhoff D, Wang J, Vassort G, Lederer WJ, Marks AR (2003) Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J Biol Chem 278:444–453. doi:10.1074/jbc.M207028200

Cross PubMed ChemPort

62. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97:793–798. doi:10.1073/pnas.97.2.793
PubMed ChemPort

63. Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT, Hajjar RJ, Del Monte F (2008) Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation 118:614–624. doi:10.1161/CIRCULATIONAHA.108.770883
PubMed ChemPort

64. Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, Weiser D, Hahn H, Carr AN, Syed F, Mavila N, Jha L, Qian J, Marreez Y, Chen G, McGraw DW, Heist EK, Guerrero JL, DePaoli-Roach AA, Hajjar RJ, Kranias EG (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 96:756–766. doi:10.1161/01.RES.0000161256.85833.fa

PubMed ChemPort

65. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577. doi: 10.1038/nrm1151

PubMed ChemPort

66. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376. doi:10.1016/S0092-8674(00)80847-8

PubMed ChemPort

67. Ono K, Yano M, Ohkusa T, Kohno M, Hisaoka T, Tanigawa T, Kobayashi S, Matsuzaki M (2000) Altered interaction of FKBP12.6 with ryanodine receptor as a cause of abnormal Ca(2+) release in heart failure. Cardiovasc Res 48:323–331. doi:10.1016/S0008-6363(00)00191-7

68. Maier LS, Bers DM (2007) Role of Ca²⁺/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res 73:631–640. doi:10.1016/j.cardiores.2006.11.005

PubMed ChemPort

69. Kohlhaas M, Zhang T, Seidler T, Zibrova D, Dybkova N, Steen A, Wagner S, Chen L, Brown JH, Bers DM, Maier LS (2006) Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res 98:235–244. doi:10.1161/01.RES.0000200739.90811.9f
PubMed ChemPort

 Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR (2006) Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci USA 103:511–518. doi:10.1073/pnas.0510113103

ChemPort ChemPort

 Pieske B, Maier LS, Piacentino V 3rd, Weisser J, Hasenfuss G, Houser S (2002) Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation 106:447–453. doi:10.1161/01.CIR.0000023042.50192.F4

ChemPort ChemPort

72. Gray RP, McIntyre H, Sheridan DS, Fry CH (2001) Intracellular sodium and contractile function in hypertrophied human and guinea-pig myocardium. Pflugers Archiv 442:117–123. doi:10.1007/s004240000512

SpringerLink PubMed ChemPort

73. Despa S, Islam MA, Weber CR, Pogwizd SM, Bers DM (2002) Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105:2543–2548. doi:10.1161/01.CIR.0000016701.85760.97

PubMed ChemPort

74. Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38:475–483. doi:10.1016/j.yjmcc.2004.12.012

eross PubMed ChemPort

75. Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH, Bers DM, Maier LS (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138. doi:10.1172/JCl26620

PubMed ChemPort

76. Sossalla S, Wagner S, Rasenack EC, Ruff H, Weber SL, Schondube FA, Tirilomis T, Tenderich G, Hasenfuss G, Belardinelli L, Maier LS (2008) Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts—role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol 45:32–43. doi:10.1016/j.yjmcc.2008.03.006

crossref PubMed ChemPort

77. Fredj S, Lindegger N, Sampson KJ, Carmeliet P, Kass RS (2006) Altered Na+ channels promote pause-induced spontaneous diastolic activity in long QT syndrome type 3 myocytes. Circ Res 99:1225–1232. doi:10.1161/01.RES.0000251305.25604.b0

crossref PubMed ChemPort

78. Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85:1743–1750

PubMed ChemPort

79. Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H (1994) Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 15:164–170

PubMed ChemPort

80. Pieske B, Sutterlin M, Schmidt-Schweda S, Minami K, Meyer M, Olschewski M, Holubarsch C, Just H, Hasenfuss G (1996) Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J Clin Invest 98:764–776.

doi: 10.1172/JCI118849

cross ref PubMed ChemPort

81. Fox K, Ford I, Steg PG, Tendera M, Robertson M, Ferrari R (2008) Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet 372:817–821. doi:10.1016/S0140-6736(08)61171-X

cross ref PubMed

82. Ozdemir S, Bito V, Holemans P, Vinet L, Mercadier JJ, Varro A, Sipido KR (2008) Pharmacological inhibition of na/ca exchange results in increased cellular Ca2+ load attributable to the predominance of forward mode block. Circ Res 102:1398–1405. doi:10.1161/CIRCRESAHA.108.173922

PubMed ChemPort

83. Neary P, Duncan AM, Cobbe SM, Smith GL (2002) Assessment of sarcoplasmic reticulum Ca(2+) flux pathways in cardiomyocytes from rabbits with infarct-induced left-ventricular dysfunction. Pflugers Archiv 444:360–371. doi:10.1007/s00424-002-0794-0

SpringerLink PubMed ChemPort

84. Mason CA, Ferrier GR (1999) Tetracaine can inhibit contractions initiated by a voltage-sensitive release mechanism in guinea-pig ventricular myocytes. J Physiol 519(Pt 3):851–865. doi:10.1111/j.1469-7793.1999.0851n.x

PubMed ChemPort

85. Wehrens XH, Lehnart SE, Reiken S, van der Nagel R, Morales R, Sun J, Cheng Z, Deng SX, de Windt LJ, Landry DW, Marks AR (2005) Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proc Natl Acad Sci USA 102:9607–9612. doi:10.1073/pnas.0500353102

PubMed ChemPort

86. Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, Suetsugu M, Hisaoka T, Obayashi M, Ohkusa T, Matsuzaki M (2003) FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107:477–484. doi:10.1161/01.CIR.0000044917.74408.BE

87. Doi M, Yano M, Kobayashi S, Kohno M, Tokuhisa T, Okuda S, Suetsugu M, Hisamatsu Y, Ohkusa T, Matsuzaki M (2002) Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation 105:1374–1379. doi:10.1161/hc1102.105270

PubMed ChemPort

88. Reiken S, Wehrens XH, Vest JA, Barbone A, Klotz S, Mancini D, Burkhoff D, Marks AR (2003) Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation 107:2459–2466. doi:10.1161/01.CIR.0000068316.53218.49

PubMed ChemPort

89. Okuda S, Yano M, Doi M, Oda T, Tokuhisa T, Kohno M, Kobayashi S, Yamamoto T, Ohkusa T, Matsuzaki M (2004) Valsartan restores sarcoplasmic reticulum function with no appreciable effect on resting cardiac function in pacing-induced heart failure. Circulation 109:911–919. doi:10.1161/01.CIR.0000115526.92541.D2

90. Lyon AR, Sato M, Hajjar RJ, Samulski RJ, Harding SE (2008) Gene therapy: targeting the myocardium. Heart (British Cardiac Society) 94:89–99. doi:10.1136/hrt.2007.116483