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Abstract Thyroid hormone exerts a large number of

influences on the cardiovascular system. Increased thyroid

hormone action increases the force and speed of systolic

contraction and the speed of diastolic relaxation and these

are largely beneficial effects. Furthermore, thyroid hor-

mone has marked electrophysiological effects increasing

heart rate and the propensity for atrial fibrillation and these

effects are largely mal-adaptive. In addition, thyroid hor-

mone markedly increases cardiac angiogenesis and

decreases vascular tone. These multiple thyroid hormone

effects are largely mediated by the action of nuclear based

thyroid hormone receptors (TR) the thyroid hormone

receptor alpha and beta. TRa is the predominant isoform in

the heart. Rapid nongenomic thyroid hormone effects also

occur, which can be clearly demonstrated in ex-vivo

experiments. Some of the most marked thyroid hormone

effects in cardiac myocytes involve influences on calcium

flux, with thyroid hormone promoting expression of the

gene encoding the calcium pump of the sarcoplasmic

reticulum (SERCa2). In contrast, in hypothyroid animals

phospholamban levels, which inhibit the SERCa2 pump,

are increased. In addition, marked effects are exerted on the

calcium channel of the sarcoplasmic reticulum the ryano-

dine channel. Related to myofibrillar proteins, myosin

heavy chain alpha is increased by T3 and MHC beta is

decreased. Complex and interesting interactions occur

between cardiac hypertrophy induced by excess thyroid

hormone action and cardiac hypertrophy occurring with

heart failure. The thyroid hormone mediated cardiac

hypertrophy in its initial phases presents a physiological

hypertrophy with increases in SERCa2 levels and

decreased expression of MHC beta. In contrast, pressure

overload induced heart failure leads to a ‘‘pathological’’

cardiac hypertrophy which is largely mediated by activa-

tion of the calcineurin system and the MAPkinases

signaling system. Recent evidence indicates that heart

failure can lead to a downregulation of the thyroid hormone

signaling system in the heart. In the failing heart, decreases

of thyroid hormone receptor levels occur. In addition,

serum levels of T4 and T3 are decreased with heart failure

in the frame of the non-thyroidal illness syndrome. The

decrease in T3 serves as an indicator for a bad prognosis in

the heart failure patient being linked to increased mortality.

In animal models, it can be shown that in pressure over-

load-induced cardiac hypertrophy a decrease of thyroid

hormone receptor levels occurs. Cardiac function can be

improved by increasing expression of thyroid hormone

receptors mediated by adeno-associated virus based gene

transfer. The failing heart may develop a ‘‘hypothyroid’’

status contributing to diminished cardiac contractile

function.
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Introduction

Thyroid hormone exerts a large number of influences on

the cardiovascular system involving cardiac contractile

effects, electrophysiological function, and cardiac structure

[1–3]. In addition, vascular tone, lipid levels and oxygen

consumption are markedly influenced by the thyroid status.

Related to cardiac contraction, thyroid hormone stimulates

the rate and force of systolic contraction and the rate of
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diastolic relaxation [3]. These beneficial cardiovascular

effects occur in animal models and patients with heart

failure. Electrophysiological effects manifest themselves as

an increased heart rate, which is sometimes apparent as

resting tachycardia in patients with hyperthyroidism. In

addition, an increased propensity to arrhythmias especially

atrial arrhythmias and atrial fibrillation occurs [4, 5].

Increased thyroid hormone action of some duration mark-

edly stimulates the cardiac protein synthesis and leads to a

concentric cardiac hypertrophy [6, 7]. Return from a

hyperthyroid to a eu-thyroid status results in a return of the

cardiac hypertrophy to a normal cardiac configuration. In

addition, less well recognized effects of thyroid hormones

are exerted on the cardiac vascular system with a promo-

tion of angiogenesis [8, 9]. Increased thyroid hormone

action leads to a decrease of the tone of arterial vascular

smooth muscle and a markedly decreased cardiac afterload

[10]. In contrast 20–40% of patients with hypothyroidism

can exhibit an increase in blood pressure [11]. Thyroid

hormone action also effects lipid level. Hypothyroidism

leads to increased cholesterol levels because of decreased

clearance and increased levels of LDL [12, 13]. Overall,

thyroid hormone stimulates metabolic rate and oxygen

consumption which results in a loss of body weight in the

majority of patients with hyperthyroidism.

Mechanisms of thyroid hormone action

in the cardiovascular system

Thyroid hormone acts in large part by binding to nuclear

thyroid hormone receptors [14]. Binding of the T3 ligand to

the thyroid hormone receptor results for a great majority of

genes in their increased transcription. In the absence of the

ligand T3, the thyroid hormone receptor can repress the

expression of genes leading to gene silencing. The com-

munication between the thyroid hormone and the basal

transcription machinery occurs through a complex set of

co-activators and co-repressors [15]. The ligand-activated

thyroid hormone receptor recruits co-activators which have

a positive stimulatory interaction with the basic transcrip-

tional machinery. In contrast recruitment of thyroid

hormone related co-repressors leads to decreased tran-

scription of thyroid hormone responsive genes. Thyroid

hormone responsive genes contain thyroid hormone

response elements (TRE’s) in their promoter, which can be

configured as cononical elements consisting of two direct

six nucleotide repeats spaced by a four nucleotide sequence

[14]. Other elements are composed as palindromic or

inverted palindromic TRE’s, and in addition, highly com-

plex TRE’s have been described [16]. Two genes, thyroid

hormone receptor alpha and thyroid hormone receptor beta,

encode thyroid hormone receptors. The thyroid hormone

receptor alpha gene encodes the ligand-activated thyroid

hormone receptor alpha 1 receptor. Due to alternate

splicing, thyroid hormone receptor alpha 2 does not bind to

thyroid hormone and has a weak silencing effect [14, 16].

In addition, short delta fragments of the thyroid hormone

receptor are expressed, which do no include the N and C

terminal portions of the T3 receptor protein [17]. This TR

delta alpha 1 and TR delta 2 fragments exert a dominant

negative effect. A specific splice variant of the thyroid

hormone receptor alpha, which is preferentially expressed

in mitochondria (P43, P28) has been described [18]. For

the thyroid receptor beta, the major transcript which is

ubiquitously present is the T3 binding thyroid hormone

receptor beta 1 isoform. The TR beta 2 isoform has a

different N-terminal configuration and is preferentially

expressed in the central nervous system and the pituitary.

In addition, a TR beta 3 isoform is expressed in an ubiq-

uitous fashion at low levels and a delta isoform TR delta

beta 3 is expressed which exerts dominant negative effects

[16]. The mediation of nuclear T3 receptor-based thyroid

hormone action is therefore a complex process which is

influenced by the thyroid hormone concentration and the

level and type of the thyroid hormone receptors alpha and

beta isoforms. In addition the thyroid hormone receptors

can form homo and heterodimers, which is the most fre-

quently occurring form. The configuration of the thyroid

hormone response elements onto which the TR binds, also

influences the thyroid hormone action. The important role

of interactions with co-repressors and co-activators was

already indicated and the interactions with cell-type spe-

cific factors can occur. These interactions lead to changes

in the histone acetylation status of chromatin.

In addition to the classical nuclear thyroid hormone

receptor-based mediation of T3 action recently rapid

effects of thyroid hormone especially in cell culture

experiments have been demonstrated [19]. The importance

of these effects under in vivo conditions is currently

explored actively. These rapid effects of thyroid hormone

may be mediated by the binding of thyroid hormone to

integrin-based receptors on the cell surface. It is also

possible that a subplasma membrane compartment of thy-

roid hormone receptors exist, as it has been described for

the estrogen receptor [20].

From gene to contractile effect

The diastolic function of the heart is influenced by the

thyroid status in a marked fashion. Hypothyroidism is

frequently combined with delayed diastolic relaxation of

the heart. The speed of diastolic relaxation of the heart is

markedly influenced by the lowering of the calcium levels.

In the mammalian cardiac myocyte, 70–90% of calcium
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lowering is achieved by pumping of calcium into the sar-

coplasmic reticulum by the calcium ATPase of the

sarcoplasmic reticulum. This ATP consuming calcium

pump is inhibited by phospholamban. The phosphoalation

of phospholamban removes this inhibitory effect. In order

to demonstrate how thyroid hormone effects can alter the

expression of a specific gene leading to a contractile phe-

notype, the expression of the SERCa2 gene is considered.

Experiments in our laboratory using nuclear run-on assays

demonstrated that thyroid hormone stimulates the tran-

scription of the SERCa2 gene. We analyzed the promoter

of the SERCa2 gene in detail and found three different

thyroid hormone response elements. One of the elements is

a direct repeat and the second and the third element are

inverted palindromic elements. The thyroid hormone

response elements were mutated to non-functional TRE’s

which eliminated thyroid hormone effects on the activation

of the SERCa2 promoter [21, 22]. These mutational studies

also revealed that the first TRE was the most powerful one

in mediating a stimulatory effect on the SERCa2 gene.

Thyroid hormone also effects the expression of phospho-

lamban. In the hypothyroid, heart phospholamban levels

are increased which will lead to an inhibition of SERCa2.

The mRNA level of the ryanodine channel is also markedly

increased with an increased thyroid status [2]. In addition

to influences on calcium handling, thyroid hormone influ-

ences the expression of myofibrillar proteins in important

ways. Thyroid hormone exerts a positive effect on the

transcription of the myosin heavy chain MHC alpha gene

inhibiting MHCb [2]. In contrast the mRNA and protein

levels of myosin heavy chain beta are decreased in hypo-

thyroid animals. Recent interesting studies have indicated

that MHC expression is modulated by micro RNA’s which

influence MHC mRNA turnover and translation [23].

Predominance of thyroid hormone receptor TR alpha

and beta in the heart and influences of thyroid

hormone receptor depletion

To explore in further detail the influence which the thyroid

hormone receptor isoforms TR alpha and TR beta have on

cardiac function, mice with an ubiquitous constitutional

knock out (KO) of TRa and TRb were used. The Tra KO

and TRbKO mice were generated by J. Samarut (Lyon,

France) [24] and provided on a collaborative basis. In

TRbKO mice, alpha Exon 5, 6, and 7 are deleted [24] and

for the thyroid hormone receptor beta Exon 4 and 5 are

removed [25]. TRaKO mice have low normal thyroid

hormone levels. In contrast, mice with deletion of TRb are

hyperthyroid most likely due to the loss of the inhibitory

effects of TRb on TSH expression. In order to achieve a

euthyroid status, the TRbKO mice are placed on a low

iodine/PTU diet and then replaced with a physiological

dose of thyroid hormone. Cardiac papillary function in

TRaKO and TRbKO knockout mice has been determined

[26, 27]. Cardiac capillary muscle function in TRaKO mice

were markedly abnormal showing delayed time for relax-

ation and decreased tension development [26]. In contrast,

the cardiac papillary muscle from TRbKO mice exhibited

normal contractile function. In addition, mice with the

deletion of TRa have a lower heart rate whereas TRbKO

mice exhibit a normal heart rate [26, 28]. The contractile

abnormalities observed in the hearts of TRaKO mice are in

line with the fact that thyroid hormone receptor alpha at the

mRNA and protein level presents 70% of all thyroid hor-

mone receptor present with thyroid hormone receptor beta

1 accounting for the remaining 20%. The marked effect of

thyroid hormone receptor alpha deletion on contractile

function could be explained by the fact that thyroid hor-

mone receptor alpha is the more predominant receptor or it

also could be due to specific qualitative characteristics of

the thyroid hormone receptor alpha which are different

from those of thyroid hormone receptor beta. Quantitative

versus qualitative effects of TR isoforms are further dis-

cussed below.

We also wanted to explore if the decrease in SERCa2

expression makes a significant contribution to the delayed

diastolic contraction observed in hypothyroid mice.

Transgenic mice in which the SERCa2 transgene is driven

by a promoter not containing thyroid hormone response

elements were generated [27]. These transgenic mice and

wild type mice are made hypothyroid. Hypothyroid wild

type mice show delayed diastolic cardiac relaxation or

delayed relaxation of papillary muscle. In contrast,

SERCa2 transgenic mice made hypothyroid exhibit a nor-

mal contractile phenotype related to diastolic relaxation or

relaxation of papillary muscle. These findings therefore

indicate that the diastolic contractile effects mediated by

hypothyroidism are largely influenced by the calcium

handling of myocytes and decreased SERCa2 expression.

Holding SERCa2 levels in hypothyroid transgenic animals

at the normal levels leads to normal diastolic contractile

function.

Interaction between thyroid status cardiac

hypertrophy and heart failure

A longstanding debate has occurred in the literature if

cardiac hypertrophy can be separated into a physiological

versus a pathological type of cardiac hypertrophy [29, 30].

Physiological hypertrophy can be induced by exercise or

by increased thyroid hormone action. It is characterized by

increased SERCa2 levels, increased myosin heavy chain

(MHC) alpha levels, and decreased MHC beta levels. In

Heart Fail Rev (2010) 15:125–132 127

123



contrast, pathological hypertrophy is, for example, medi-

ated by increase in pressure overload or hypertension with

the heart contracting against an increased after load. Some

of its hallmarks are decreases in SERCa2 levels, decreases

in MHCa levels, and increases in MHCa levels.

It has been proposed that different signaling members

mediate cardiac hypertrophy in physiological vs. patho-

logical hypertrophy. For physiological hypertrophy, one of

the models proposes that IGF1 binds to its receptor on

cardiac myocyte. This stimulates the activation of PI3

kinase leading to AKT phosphorylation which then initiates

changes in gene expression which are compatible with the

physiological cardiac hypertrophy phenotype. In contrast,

major players in pathological cardiac hypertrophy include

the activation of MAP kinase cascade with ERK1/2, p38

MAPK and JNK 1/2/3 [29]. In addition, the calcineurin

system plays an important role in pathological cardiac

hypertrophy [31]. A clear separation between physiological

and pathological hypertrophy is properly not feasible, and

over time, a compensated physiological hypertrophy may

result in cardiomyopathic dilatation and pathological type

of hypertrophy [30]. Interesting studies in which an AKT

transgene was expressed in a conditional manner in cardiac

myocytes showed that initially the hearts showed a pheno-

type which is compatible with physiological hypertrophy.

However, after 20 weeks duration, a phenotype, which is

more compatible with a dilated cardiomyopathy resulting in

decreased fractional shortening, occurred [32]. A contrib-

uting factor in the transition to a pathological hypertrophy

may have been inadequate vascular supply by capillary

density not keeping pace with the enlarging heart.

In summary, hyperthyroidism of limited duration can

lead to a compensated concentric cardiac hypertrophy.

Since hyperthyroidism is in general of a limited duration, a

physiological hypertrophic phenotype prevails. It also needs

to be noted that in hyperthyroid patients, tachycardia and

atrial fibrillation can occur and some of the heart failure

observed in hyperthyroid patients may result from rate

related heart failure. Experiments using healthy dogs indi-

cate that pacing their hearts at an increasing rate results in

heart failure [33]. It also should be noted that patients with

hyperthyroidism who developed congestive heart failure

and a dilated cardiomyopathy have been reported [34, 35]

but this is an infrequent outcome. It is possible that these

patients did have underlying heart disease. It should also be

noted that in patients with hyperthyroidism, pulmonary

hypertension and right heart failure can occur [36, 37].

Hypothyroidism and heart failure

Several reports in the literature have indicated that hypo-

thyroidism can result in dilated cardiomyopathy and

congestive heart failure [38, 39]. In addition, subclinical

hypothyroidism can also increase the risk for heart failure

[40]. In one report, a cardiac biopsy was undertaken

because a cardiac transplant was planned before the

hypothyroidism was diagnosed [41]. The mRNA analysis

from the patient’s heart, when he was severely hypothyroid

indicated that MHCa was of markedly lower predominance

than after treatment for the hypothyroidism had occurred

with opposite changes for MHCb. In addition, ANF mRNA

was markedly elevated in the hypothyroid heart and not

detectable in the normal heart. Related to proteins involved

in calcium handling, phospholamban levels were 10-fold

higher in the hypothyroid than in the eu-thyroid heart [41].

Results in various animal models of hypothyroidism indi-

cate that the level and activity of SERCa2 is markedly

decreased and similar changes occur in animals or patients

with heart failure [42, 43]. These changes can be linked to a

decrease in diastolic relaxation. In addition, phospholam-

ban levels are markedly increased at the mRNA levels in

hypothyroid and failing hearts, further contributing to

decreased SERCa2 function and delayed diastolic relaxa-

tion [44, 45]. The ryanodine receptor is markedly

decreased in hypothyroid hearts [46] and due to alterations

in ryanodine receptor phosphorylation in failing hearts,

problems with appropriate calcium handling occur [47].

Ryanodine receptor abnormalities may be linked to

abnormal systolic function and a decrease in systolic force

generation [47]. Findings in transgenic mice expressing a

SERCa2 transgene driven by a promoter, which does not

contain thyroid hormone response elements, lead to a

complete rescue of the hypothyroid contractile phenotype

as mentioned above [27].

Interaction between T3 action and heart

failure-induced signaling mechanisms

A crosstalk between signaling cascades related to thyroid

hormone mediated increases in SERCa2 expression and

factors, which are altered in heart failure, have been noted

in the past. For example, when neonatal myocytes are

transfected with the SERCa2 promoter and b galactyocy-

dase (b-bal) reporter, addition of thyroid hormone leads to

a two-fold increase in expression of the 3.2 KB SERCa2

promoter driven b-bal reporter. Incubation of these neo-

natal myocytes with a combination of T3 and the cytokines

LIF and 1L-6 [48] completely abolished the T3 mediated

increase in SERCa2 promoter–reporter activity. These

findings indicate that increased levels of cytokines, as they

occur with heart failure, can markedly counteract thyroid

hormone-mediated increases in the expression of SERCa2.

It can be demonstrated that hypothyroidism, including

sub-clinical hypothyroidism, is a risk factor for heart
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failure [38–40]. Both hypothyroidism and heart failure

result in delayed diastolic relaxation and abnormal calcium

handling. Both hypothyroidism and heart failure lead to

decreased expression of SERCa2. In addition, the inhibi-

tory action of phospholamban is enhanced, either due to

increased phospholamban expression or due to decreased

phospholamban phosphorylation. Heart failure is fre-

quently accompanied by elevated cytokine levels and

cytokines oppose the positive regulatory effects of thyroid

hormone on SERCa2 expression.

Heart failure and ischemia decrease thyroid

hormone signaling members

Interactions between thyroid hormone action and heart

failure are also noted in the non-thyroidal illness syndrome

(NTIS). The non-thyroidal illness syndrome results, when

severe systemic illness including heart failure or myocar-

dial infarction leads to changes in the function of the

hypothalamic pituitary axis. A decrease in T4 to T3 con-

version occurs, which is followed by decreased secretion of

thyroid stimulating hormone (TSH) and diminished thyroid

hormone release from the thyroid gland. Hallmark labo-

ratory findings of NTIS are decreases in T3, increases in

reverse T3, which are followed by decreases in T4 and

TSH. With recovery from the severe illness, a rebound

happens and TSH levels can exceed the upper normal range

for a short while before re-adjustment to a normal condi-

tion occurs and normalization of thyroid hormone levels

follows. It is interesting to note that cytokines have been

invoked to play a significant role in inducing the non-

thyroidal illness syndrome. Several recent reports indicate

that a very strong correlation exists between the decrease in

T3 levels induced by congestive heart failure and the sur-

vival [49]. The report demonstrates that the lower the heart

failure-induced decrease in T3 is the more significant of a

decrease in survival occurs. The connection between thy-

roid hormone signaling and heart failure is also

documented in studies in which thyroid hormone receptor

levels were determined in explanted hearts from patients

undergoing cardiac transplantation [50]. In one report, a

significant decrease of thyroid hormone receptor alpha 1

expression and an increase in the non-ligand binding thy-

roid hormone receptor alpha 2 isoform were noted [50]. We

pursued these studies in a mouse model using ascending

aortic constriction to induce cardiac hypertrophy and heart

failure [51]. We then quantitated the mRNA level for

thyroid hormone receptor alpha 1 and beta 1. Both thyroid

hormone receptor alpha 1 and beta 1 were significantly

decreased in the pressure overloaded failing hearts. Other

investigators have reported that ischemic heart disease

leads to alterations in thyroid hormone receptor levels [52].

In addition, it has been reported that in ischemic heart

disease the deiodinase type 3, which converts T4 to the

biologically inactive reverse T3 is markedly elevated [53].

Furthermore, inducing right cardiac ventricular hypertro-

phy by a model of pulmonary hypertension resulted in

significant increases in the type 3 diodonase (D3) [54]. The

mechanism leading to D3 induction was explored in more

detail and the HIF1 alpha factor was found to directly

stimulate the promoter of the T3 deiodinase gene resulting

in increased T3 expression [55].

It could therefore be postulated that a close interaction

between thyroid hormone action and normal cardiac

function occurs. Hypothyroidism, including sub-clinical

hypothyroidism, presents a risk to develop heart failure. In

addition, the non-thyroidal illness syndrome, which is in

part, mediated by cytokines leads to decreased thyroid

hormone receptor levels in the failing heart and in some

specific conditions to increased conversion of T4 to the

biologically inactive reverse T3. It could therefore be

postulated that the non-thyroidal illness syndrome gener-

ates a ‘‘hypothyroid’’ heart characterized by decreased T3

levels and decreased thyroid hormone receptor levels. It is

therefore an interesting question to examine if increasing

thyroid hormone action in the failing heart will result in

improved cardiac function.

In order to address the question if increasing T3 action in

the failing heart improves cardiac function, we pursued

the following studies. Ascending aortic constriction was

induced in mice, which resulted in pressure overload-

induced heart failure [51]. As it was mentioned above, thy-

roid hormone receptor alpha and beta levels are decreased in

these hearts. In order to restore thyroid hormone receptor

levels toward the normal range, thyroid hormone receptor

alpha 1 and beta 1 were cloned into adeno-associated viruses

and injected into the left ventricular wall of the heart. In

addition, some of these animals received a physiological

replacement dose of 3.5 ngT3/gBW per day. Two weeks

after administration of viral vector-based thyroid hormone

receptor expression and T3 administration, the rate of car-

diac relaxation was determined. When we determined dP/dt

min as a parameter of cardiac relaxation, we noted that in

pressure overloaded heart with increased expression of thy-

roid hormone receptor alpha or thyroid hormone receptor

beta, a very significant increase in the speed of diastolic

relaxation occurred, however complete normalization was

not achieved. The addition of a T3 replacement dose did not

lead to a further significant increase in contractile improve-

ment. It has also been reported that a tetracycline system-

based inducible increased the expression of the deiodinase

type 2, which converts T4 to T3, in the heart of animals with

pressure overload-induced cardiac hypertrophy led to a

significant improvement in systolic and diastolic contractile

function [56].
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These studies in animal models therefore indicate that

increasing thyroid hormone levels in failing hearts by AV

expression leads to a significant and equal rescue effect by

thyroid hormone receptor alpha 1 and beta 1. In addition,

increasing T3 levels in the failing heart by increasing D2

activity also markedly improves contractile function. It

appears therefore that the heart failure-induced lowering of

thyroid hormone levels or thyroid hormone receptor levels

in the failing heart exerts a mal-adaptive effect.

Previous studies in human beings, in which T3 therapy

was administered to patients after cardiac surgery revealed

a beneficial effect in lowering the incidence of atrial

fibrillation [57]. In other studies thyroxin treatment had a

beneficial effect on dilated cardiomyopathy [58]. A very

recent trial indicates that T3 replacement in patients with

heart failure has beneficial contractile effects [59]. It

should also be noted that in other studies intravenous T3

administration to patients undergoing coronary artery

bypass graft surgery in randomized double-blind placebo

controlled trials did not lead to significant cardiac

improvement [60]. Overall, it appears that in failing hearts,

a hypothyroid cardiac state may occur due to decreased

thyroid hormone and thyroid hormone receptor levels in

failing hearts. Animal studies and a limited number of

human trials indicate that increasing thyroid hormone

action either by increasing T3 receptor levels or T3 in itself

can improve cardiac function without significant detri-

mental effects. It is currently unclear if long term

administration of thyroid hormone to patients in heart

failure will be well tolerated and will lead to increased

survival. Excessive thyroid hormone administration lead-

ing to a hyperthyroid state needs to be avoided because

negative electrophysiological consequences such as an

increase in heart rate and cardiac arrhythmias could result.
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