PRE-CLINICAL RESEARCH

Cannabidiol Attenuates Cardiac Dysfunction, Oxidative Stress, Fibrosis, and Inflammatory Cell Death Signaling Pathways in Diabetic Cardiomyopathy

Mohsan Rajesh, PhD, Partha Mukhopadhyay, PhD, Sándor Bátkai, MD, PhD, Vivek Patel, Keita Saito, PhD, Shingo Matsumoto, PhD, Yoshihiro Kashiwaya, MD, PhD, Béla Horváth, MD, PhD, Bami Mukhopadhyay, PhD, Lauren Becker, György Haskó, MD, PhD, Lucas Laude, MD, David A. Wink, PhD, Aristidis Veyes, MD, Raphael Mechoulam, PhD, and Pál Pacher, MD, PhD.

* Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
† Laboratory of Metabolic Control, NIAAA, National Institutes of Health, Bethesda, Maryland
‡ Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
§ Department of Surgery, University of Medicine and Dentistry, New Jersey–New Jersey Medical School, Newark, New Jersey
¶ Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
¶ Microcirculation Laboratory and Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
Department for Medicinal Chemistry and Natural Products, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel

Manuscript received May 15, 2010; revised manuscript received July 5, 2010, accepted July 6, 2010.

Reprint requests and correspondence: Dr. Pál Pacher, Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, Maryland 20892-9413 (Email: pacher@mail.nih.gov).

Objectives: In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose.

Background: Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans.

Methods: Left ventricular function was measured by the pressure-volume system. Oxidative stress, spasticity associated with multiple sclerosis in humans.

Results: Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative/nitrative stress, nuclear factor-κB and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38α) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor
Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis...

Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-κB activation, and cell death in primary human cardiomyocytes.

Conclusions: Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis.

Key Words: cannabinoids • diabetic complications • inflammation • oxidative stress

Abbreviations and Acronyms
ADP = adenosine diphosphate
CBD = cannabidiol
HCM = human cardiomyocytes
HG = high glucose
HNE = hydroxynonenal
ICAM = intercellular adhesion molecule
ICB-α = inhibitor of nuclear transcription factor nuclear factor-κB
iNOS = inducible nitric oxide synthase
JNK = c-Jun N-terminal kinase
MAPK = mitogen-activated protein kinase
MMP = matrix metalloproteinase
NADPH = nicotinamide adenine dinucleotide phosphate
NF-κB = nuclear factor kappa B
NT = nitrotyrosine
PARP = poly(ADP-ribose) polymerase
ROS = reactive oxygen species
SOD = superoxide dismutase
THC = delta 9-tetrahydrocannabinol
TNF = tumor necrosis factor
TUNEL = terminal deoxynucleotidyl transferase dUTP nick end labeling
VCAM = vascular cell adhesion molecule

Related Article
Inside This Issue
J. Am. Coll. Cardiol. 2010 56: A26. [Full Text] [PDF]