
Review article

n engl j med 364;18 nejm.org may 5, 20111746

Mechanisms of Disease

The Hemostatic System as a Modulator  
of Atherosclerosis

Julian Ilcheff Borissoff, M.D., Henri M.H. Spronk, Ph.D.,  
and Hugo ten Cate, M.D., Ph.D.

From the Laboratory for Clinical Throm-
bosis and Hemostasis, Departments of 
Internal Medicine and Biochemistry, Car-
diovascular Research Institute of Maas-
tricht, Maastricht University Medical Cen-
ter, Maastricht, the Netherlands. Address 
reprint requests to Dr. ten Cate at the 
Laboratory for Clinical Thrombosis and 
Hemostasis, Departments of Internal 
Medicine and Biochemistry, Cardiovas-
cular Research Institute of Maastricht, 
Maastricht University Medical Center, 
Universiteitsingel 50, P.O. Box 616, Box 8, 
Maastricht 6200 MD, the Netherlands, or 
at h.tencate@maastrichtuniversity.nl.

N Engl J Med 2011;364:1746-60.
Copyright © 2011 Massachusetts Medical Society.

Cardiovascular disease is one of the leading causes of death and 
complications worldwide. The classic concept of atherosclerosis assigns a 
pivotal role to inflammation in the onset and progression of this disease.1,2 

Various inflammatory cell types (e.g., macrophages, neutrophils, and lymphocytes) 
play crucial roles in the destabilization and subsequent rupture or erosion of an 
atherosclerotic plaque, ultimately resulting in atherothrombosis.3 Inflammation is 
closely linked to coagulation in several pathologic conditions.4 Intriguingly, extensive 
bidirectional cross-talk between the two systems has been established in many com-
plex diseases,5,6 including atherosclerosis.

Although there is no clinical evidence of a role for the hemostatic system in the 
progression of atherosclerosis, ample experimental data indicate that platelets and 
the coagulation system are important determinants of both atherogenesis and ath-
erothrombosis. In numerous clinical trials, the administration of antiplatelet or 
anticoagulant therapy has not been associated with attenuation or regression of 
plaque growth. Nevertheless, the hemostatic system is well known for its capacity 
to exert a multitude of actions on the vasculature, which may influence the mo-
lecular and cellular composition of the arterial wall and presumably of the athero-
sclerotic plaque. This review covers recent advances in this field and discusses 
mechanisms of hemostasis as potential modulators of plaque phenotype.

cross- ta lk mech a nisms link ing the hemos tatic s ys tem 
w i th atherosclerosis

hemostasis

Hemostasis is accomplished through a network of processes that include the platelet 
system, coagulation, and anticoagulant and fibrinolytic pathways, which all support 
the dynamic equilibrium that provides proper blood flow.7,8 Such processes evolved 
to maintain the blood in a fluid state under physiologic conditions and to arrest 
bleeding after vascular injury9-15 (Fig. 1A and 1B). Disruption of this well-regulated 
balance leads to pathologic conditions, such as thrombosis and bleeding.

molecular and cellular responses in the Vasculature

The targeting of genes that encode distinct hemostatic factors and their effect on 
arterial thrombosis in vivo has been extensively studied (see Table 1 in the Supple-
mentary Appendix, available with the full text of this article at NEJM.org). Abundant 
experimental data suggest a role for various constituents of the platelet membrane 
and coagulation system in the regulation of atherosclerosis progression. Beyond 
their traditional hemostatic functions, platelets are considered important in proin-
flammatory conditions, such as atherosclerosis.16 In addition, numerous coagula-
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tion proteins have been implicated in processes 
such as the disruption of the endothelial barrier, 
oxidative stress, leukocyte recruitment, inflam-
mation, migration and proliferation of vascular 
smooth-muscle cells (VSMCs), immune responses, 
apoptosis of platelets and other cell types, and 
angiogenesis.17,18 Some of these actions, mostly 
mediated by the complex of tissue factor and fac-
tor VIIa (TF–FVIIa), factor Xa, and thrombin, in-
volve the activation of G-protein–coupled prote-
ase-activated receptors (PARs) 1, 2, 3, and 4. PARs 
are widely distributed on vascular cells under nor-
mal conditions and are overexpressed during ath-
erogenesis.19

Platelets, the Cellular Interface between 
Hemostasis and Atherosclerosis

Pioneering studies have documented a prominent 
role of platelets in experimental studies of ath-
erogenesis.20,21 Platelets exert a plethora of pro-
atherogenic activities and create an interface 
between hemostasis, innate immunity, and in-
flammation in atherosclerosis.16 A systemic in-
flammatory environment, independent of vessel-
wall injury, induces a phenotypic switch to a 
proatherogenic endothelium. This results in en-
hanced expression of cell-adhesion molecules, such 
as P-selectin and E-selectin. The primary adhe-
sion of platelets on a compromised vascular en-
dothelial surface is accomplished through the 
binding of platelet glycoprotein Ibα receptors to 
von Willebrand factor, whereas firm adhesion is 
mediated through β3 integrins. Once adherent, 
platelets also secrete atherogenic mediators, such 
as cytokines, chemokines, growth factors, adhe-
sion molecules, and coagulation factors. The up-
regulation of P-selectin expression on the surfaces 
of both platelets and endothelial cells potentiates 
the interactions with P-selectin glycoprotein li-
gand 1, which is expressed on leukocyte mem-
branes. The binding between platelets and circu-
lating leukocytes (monocytes and neutrophils), 
dendritic cells, and progenitor cells produces co-
aggregates that support further leukocyte activa-
tion, adhesion, and transmigration, processes con-
sidered to be critical for plaque formation and 
progression22-29 (Fig. 2).

coagulation system during atherosclerotic 
plaque progression

We have found a local synthesis of several func-
tionally active coagulation proteins, which sug-

gests an active cell-based coagulation network, 
within human atherosclerotic lesions. The role of 
these coagulation proteins in atherogenesis is in-
dicated by increased thrombin-generating activi-
ty in early atherosclerotic lesions, as compared 
with that in stable, advanced lesions.30 These find-
ings are supported by experimental data31 and a 
clinical study showing that increased plaque echo-
genicity (more fibrous structure), rather than 
plaque echolucency (lipid-rich, higher content of 
inflammatory cells and thinner fibrous caps), is 
associated with thrombin generation in plasma 
from patients with carotid-artery stenosis.32 The 
abundance of coagulation factors within early 
atherosclerotic vessels and local generation of 
thrombin or fibrin may be attributable to pri-
mary protective mechanisms against vascular 
injury. However, the persistent inflammatory en-
vironment within the arterial wall, supported in 
part by coagulation-mediated actions, may main-
tain local thrombin generation, which will even-
tually turn into a vicious cycle, contributing to the 
formation of intraplaque thrombi33,34 and thus 
ultimately leading to plaque instability.

Tissue Fac t or (E x tr insic) 
Path wa y

Tissue factor is a transmembrane class II cytokine 
receptor, which is considered the primary physi-
ologic trigger of the coagulation cascade.8 Tissue 
factor is also physiologically essential for vascu-
lar development. In mice, tissue factor deficiency 
is associated with a high rate of embryonic death 
and impaired vascular integrity. Tissue factor is 
differentially distributed among the various cell 
types of the vessel wall. Under physiologic condi-
tions in normal blood vessels, the inner endothe-
lial lining does not express tissue factor, whereas 
the surrounding layers, consisting of VSMCs, ad-
ventitial fibroblasts, and pericytes, show abundant 
synthesis of tissue factor. This specific vascular 
localization of tissue factor is generally attributed 
to its role in the prevention of bleeding after in-
jury, also referred to as a hemostatic envelope.35

Within the atherosclerotic lesion, tissue fac-
tor is predominantly localized on macrophages, 
VSMCs, and foam-cell–derived debris within the 
necrotic core.30,36-38 Tissue factor activity is sig-
nificantly higher in lesions obtained from pa-
tients with unstable angina or myocardial in-
farction than in those from patients with a stable 
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form of cardiovascular disease,39-41 suggesting a 
role of this coagulation protein in plaque throm-
bogenicity. Factor VII is also extrahepatically ex-
pressed within both normal and atherosclerotic 
vessels and colocalizes with tissue factor on 
macrophages and VSMCs.30 Apart from its co-
agulation properties, the TF–FVIIa complex is 
multifunctional, with a capacity to promote cell 
signaling, gene transcription, and subsequent 
protein synthesis. PAR-2 activation is essential in 
the mediation of TF–FVIIa–induced signaling. The 
latter may engage several proatherogenic pro-
cesses, such as monocyte and fibroblast chemo-
taxis, inflammation, VSMC migration and pro-
liferation (vascular remodeling), angiogenesis 
(contributing to plaque destabilization), induction 
of oxidative stress in macrophages, and apopto-
sis42 (Fig. 3). Surprisingly, reduced vascular ex-
pression of tissue factor does not affect athero-
sclerosis progression in transgenic mice.43

There are few clinical data regarding the role 

of TF–FVIIa on atherosclerosis progression. Lev-
els of plasma tissue factor antigen, modulated by 
known polymorphisms of the tissue factor gene, 
are positively associated with both an increased 
risk of death from cardiovascular causes44 and 
an increased carotid intima–media thickness,45 
which is considered a marker of subclinical ath-
erosclerosis. A similar relation between factor VII 
and increased intima–media thickness has been 
documented both in healthy young adults and in 
patients with peripheral arterial disease.46,47

Common Coagul ation Path wa y

Pleiotropic Factor Xa

Once activated, factor Xa initiates intracellular 
signaling in various cell types of the cardiovascu-
lar system, preferentially mediated by PAR-2 or, 
when in ternary complex with TF–FVIIa, through 
both PAR-1 and PAR-2.17 PAR-1, PAR-2, or both are 
present in abundance on endothelial cells, leuko-

Figure 1 (facing page). Platelets and Coagulation Factors in the Regulation of Thrombus Formation.

Panel A shows platelet adhesion and aggregation, in which atherothrombosis begins with an endothelial injury or 
rupture of an atherosclerotic plaque. This process triggers transient neurohumoral vasoconstrictor mechanisms, 
which are reinforced by the release of endothelium-derived factors, such as endothelin. The platelet membrane re-
ceptors glycoprotein Ib/IX/V and glycoprotein VI elicit platelet tethering to the exposed thrombogenic subendotheli-
al proteins, von Willebrand factor, and collagen. In addition, glycoprotein VI generates intracellular signals to medi-
ate platelet adhesion and aggregation through the activation of integrin receptors, such as glycoprotein Ia/IIa and 
glycoprotein IIb/IIIa, with the latter also serving as a receptor for fibrinogen. These molecular events ultimately con-
tribute to the formation of the primary hemostatic plug.10 Panel B shows the tissue factor (extrinsic) pathway, 
in which tissue factor, the major trigger of coagulation, is exposed at the site of plaque erosion or rupture. Tissue 
factor forms a catalytic complex with factor VIIa that leads to the subsequent activation of factors IX and X. In a 
 so-called prothrombinase complex, activated factor X together with activated factor V promotes a downstream en-
zymatic cleavage of prothrombin, which yields small amounts of thrombin.11 Thrombin is a pleiotropic, central co-
agulation enzyme12 that not only converts fibrinogen into fibrin but also has a substantial role in the activation of 
platelets and activates factor XIII to induce fibrin polymerization, a fundamental process for the formation of a stable 
clot, or thrombus. Furthermore, by supporting positive-feedback activation of the upstream factors V, VIII, and XI, 
thrombin plays a crucial part in the amplification and propagation phases of coagulation. The activated platelet sur-
face is also a critical catalyst for the coagulation cascade. Platelets actively participate in the clotting process by in-
troducing extra amounts of tissue factor, factor V, fibrinogen, and factor XIII into the system, derived from various 
local sources (fibrinogen and factors V and XIII stored in α granules),13 and facilitating the direct activation of factor 
XI by thrombin and the subsequent activation of factor IX on the platelet surface. Factor IXa forms the so-called te-
nase complex together with factor VIIIa, thereby igniting a burst of additional thrombin generation, which is essen-
tial in forming sufficient fibrin and sealing the defect. Panel C shows the contact activation (intrinsic) pathway, 
which is not considered to be essential for protection against bleeding in vivo, even though its components may be 
involved in the pathogenesis of arterial thrombosis.14 The exposure of plasma prekallikrein, high-molecular-weight 
kininogen, and factors XI and XII to anionic surfaces15 results in the conversion of prekallikrein to kallikrein, which 
activates factor XII into factor XIIa but also cleaves high-molecular-weight kininogen, leading to the release of the 
 inflammatory mediator and vasodilator bradykinin. Factor XIIa activates factor XI and favors the conversion of more 
prekallikrein to kallikrein, thereby reciprocally amplifying the cascade. This sequence of proteolytic reactions leads to 
the activation of factor IX, which ultimately cleaves factor X into its active form and culminates in the convergence 
of both coagulation pathways. Gray circles indicate the inactive form of a coagulation protein, and green circles in-
dicate the active form.
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cytes, VSMCs, fibroblasts, and dendritic cells. Fac-
tor Xa–dependent, PAR-mediated signaling con-
tributes to the production of proinflammatory 
cytokines, including interleukin-6, interleukin-8, 
and chemokine (C-C motif) ligand 2 (CCL2), and 
to the expression of cell-adhesion molecules, in-
cluding E-selectin, intracellular adhesion molecule 
1 (ICAM-1), and vascular-cell adhesion molecule 
1 (VCAM-1), along with tissue factor up-regulation, 
VSMC proliferation, and the release of growth fac-
tors (vascular endothelial growth factor, platelet-
derived growth factor, and transforming growth 
factor β).17 All these may contribute to the pro-
gression of atherosclerotic plaque, involving in-

flammation, leukocyte transmigration, resteno-
sis, and angiogenesis (Fig. 3). Of note, vascular 
remodeling and neointimal formation were 
 reduced on targeted delivery of nonspecific fac-
tor Xa inhibitors (heparin and low-molecular-
weight heparins) coupled to an antifibrin anti-
body.48

Thrombin

Thrombin is a unique serine protease that is piv-
otal to coagulation and that may also display vari-
ous actions toward other systems (e.g., immune, 
nervous, gastrointestinal, and musculoskeletal sys-
tems). Governed by the interaction and proteo-

V

A

B Stable Clot

VII VIIa

XIIa

VIIa

IX

IX IXa

IXa

XIII

XI

VIII VIIIa

XIIIa

Xa

X

X Va

Va

Xa

Tissue
 factor Tissue

 factor

Prothrombin

Prothrombin

Thrombin

Fibrin

Fibrinogen

Prothrombinase
 complex

Positive thrombin feedback 

Thrombin

Thrombin

Thrombin

Tenase 
complex

Additional amount of factor
 provided by platelets

XIa

C

XII

XI

XIIa

XIa
Prekallikrein Kallikrein

Anionic
surfaces

High-molecular-
 weight kininogen Bradykinin

Fibrinogen

Glycoprotein
IIb/ IIIa

von Willebrand 
factor

Collagen

Platelet

Glycoprotein
 Ib/ IX/ V

Glycoprotein VI

1

Longo

4/11/11

AUTHOR PLEASE NOTE:
Figure has been redrawn and type has been reset

Please check carefully

Author

Fig #

Title

ME

DE
Artist

Issue date

COLOR FIGURE

Draft 4
Borissoff

Knoper

5/05/11

The New England Journal of Medicine 
Downloaded from nejm.org on July 25, 2011. For personal use only. No other uses without permission. 

 Copyright © 2011 Massachusetts Medical Society. All rights reserved. 



T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 364;18 nejm.org may 5, 20111750

lytic activation of its direct cellular targets (PAR-1, 
3, and 4),49,50 thrombin is entwined with the reg-
ulation of vascular physiology and pathophysi-
ology51 (Fig. 3). Thrombin is an example of a 
multifaceted molecule with broad physiologic 
properties. By binding to thrombomodulin, throm-

bin favors the transformation of protein C into 
activated protein C, a potent anticoagulant and 
antiinflammatory molecule. Moreover, thrombin 
can diminish the release of interleukin-12 and 
promote the up-regulation of interleukin-10 in 
monocytes, thus inducing immunosuppressive 
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Figure 2. Platelets in Atherogenesis.

Intact endothelium normally expresses CD39 (ecto-ATPase) and CD73 (ecto-5′-nucleotidase), which act in tandem to induce the break-
down of the prothrombotic adenosine 5′-triphosphate (ATP) and adenosine diphosphate (ADP) into the largely antiinflammatory ade-
nosine, thus preventing platelet activation and aggregation. Healthy endothelium also secretes vasodilators, such as prostacyclin and ni-
tric oxide, which have potent antiadhesive and antiaggregating effects. At the time of activation, platelets undergo a substantial change 
in shape and promptly release a variety of autocrine and paracrine mediators such as ADP, epinephrine, and thromboxane A2. Studies 
investigating how platelets orchestrate these widely differing atherogenic actions have provided an increased understanding of the 
mechanisms involved. Much attention has focused on cytokine-like and chemokine systems such as the CD40–CD40L dyad, CCL5 
(RANTES), and platelet factor 4.23,24 Platelet factor 4 supports monocyte differentiation into macrophages and down-regulates the athe-
roprotective receptor CD163, which accounts for the clearance of hemoglobin–haptoglobin complexes. Transgenic mice lacking platelet 
factor 4 have diminished progression of atherosclerosis. Furthermore, CD40 and its ligand, CD40L, which belongs to the superfamily of 
tumor necrosis factor receptor and ligand, is widely expressed in the vessel wall (e.g., in endothelial cells, vascular smooth-muscle cells, 
and fibroblasts) and several immune constituents (monocytes or macrophages, neutrophils, mast cells, T and B cells, and dendritic 
cells).25 The complex array of proinflammatory, immune-modulating effects and prothrombotic features26 assert an integral role for 
CD40–CD40L in atherogenesis. Overall, these findings support the hypothesis that platelets are important proinflammatory players that 
elicit multifaceted cellular interactions and are directly involved in the early development of atherosclerotic lesions. Platelets are primary 
mediators in both adaptive and innate immunity.27 Hence, the targeting of platelet chemokines appears to be therapeutically unsuitable 
in the context of atherosclerosis because of the severe impairment of multiple systemic immune responses, which may also result in car-
cinogenesis.28,29 ADAM15 denotes ADAM metallopeptidase domain–containing protein 15, CCL2/3 chemokine (C-C motif) ligand 2/3, 
ICAM-1 intercellular cell-adhesion molecule 1, TNF-α tumor necrosis factor α, and VCAM-1 vascular-cell adhesion molecule 1.
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and antiinflammatory actions. Thrombin may also 
play a role in normal vasomotor regulation.18

The endothelial decay of thrombomodulin dur-
ing atherogenesis may allow thrombin to poten-
tiate atherogenic processes, such as endothelial 
dysfunction and barrier disruption, oxidative 
stress, apoptosis, inflammation (overexpression 
of cytokines or chemokines), activation of plate-
lets and leukocytes, leukocyte recruitment, mi-
gration and proliferation of VSMCs, and angio-

genesis, which suggests an important role in the 
pathogenesis of cardiovascular disease.18 Throm-
bin, factor Xa, factor XIa, factor IXa, and plas-
min also show enzymatic activity for cleavage of 
complement proteins C3 and C5 into their active 
forms.52 Proteins C3 and C5 are known to in-
duce inflammation and chemotaxis of inflam-
matory cells. Human coronary atherosclerotic le-
sions overexpress anaphylatoxin receptors C3aR 
and C5aR, as compared with healthy vessels, 
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Figure 3. Nonhemostatic Actions Triggered by the Tissue Factor and Common Activation Pathways in the Phenotypic 
Modulation of the Arterial Wall.

Thrombin, factor Xa, and the tissue factor–factor VIIa complex can activate protease-activated receptors, which are 
widely expressed on endothelial cells, leukocytes, vascular smooth-muscle cells, fibroblasts, dendritic cells, and 
platelets, resulting in a plethora of proatherogenic actions. Gray circles indicate the inactive form of a coagulation 
protein, and green circles indicate the active form. LDL denotes low-density lipoprotein.
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primarily localized on macrophages but also on 
endothelial cells, intimal VSMCs, T cells, and mast 
cells. Overall, these data establish a new inter-
face between coagulation and inflammation in 
atherosclerosis.

The administration of thrombin-specific in-
hibitors reduces restenosis in rabbits with ath-
erosclerosis after angioplasty.53,54 Another piece 
of evidence for the in vivo relevance of these ef-
fects comes from a study showing that the direct 
thrombin inhibitor melagatran reduces athero-
sclerosis progression in apolipoprotein E–knock-
out mice and promotes plaque stability by inhib-
iting proinflammatory transcription factors and 
attenuating the synthesis of matrix metallopro-
teinases.55 Furthermore, mice with combined defi-
ciency of factor VIII and apolipoprotein E had 
significantly less development of atherosclerotic 
lesions than control mice, despite having more 
pronounced hyperlipidemia.56 In contrast, hyper-
coagulability has been linked with atherosclero-
sis progression in murine studies, showing that 
homozygosity for factor V Leiden, a known pro-
thrombotic mutation, promotes atherogenesis.57 
However, a recent study showed an increase in 
the size of atherosclerotic plaques in procoagu-
lant mice, indicating that a hypercoagulable state 
contributes to a more stable plaque phenotype.31 
Overall, these findings suggest that hemostasis 
exerts various effects on the vasculature and, by 
the action of distinct regulators, may ultimately 
contribute to determining the plaque phenotype.

The clinical evidence in this regard remains 
inconsistent. Despite the fact that prothrombotic 
genetic variants have not been consistently linked 
to the progression of cardiovascular disease in 
patients,44 clinical data show a positive associa-
tion between markers of thrombin generation 
and the atherosclerotic plaque burden.58,59 Low 
levels of factor VIII have not shown atheropro-
tective effects in patients with hemophilia,44 
whereas there is clinical evidence that elevated 
levels of factor VIII promote cardiovascular dis-
ease.60 In plasma, factor VIII circulates in a com-
plex with von Willebrand factor, which modulates 
factor VIII activity in the circulation. Since mice 
that are deficient in von Willebrand factor have 
significantly fewer atherosclerotic plaques than 
control mice, von Willebrand factor may also play 
a role in atherosclerosis.61 Like the data regard-
ing factor VIII and other coagulation proteases, 
clinical data on the association between von Wille-

brand factor and cardiovascular disease have been 
inconsistent.44,60 More experimental and clinical 
data are needed to clarify these relationships.

Fibrinogen, Fibrin, and Factor XIII

In clinical studies, there have been strong asso-
ciations between increased plasma fibrinogen lev-
els and the risk of cardiovascular disease, which 
suggests hyperfibrinogenemia as an independent 
predictor of vascular events.62 Furthermore, the 
distribution of fibrinogen and fibrin degradation 
products in atherosclerotic lesions during pro-
gression has been clearly documented.63,64 Ele-
vated levels of plasma fibrinogen, a major de-
terminant of the amount of thrombin that is 
formed,65 are closely related to an enhanced rate 
of coronary-artery calcification and increased in-
tima–media thickness, both measures of prema-
ture atherosclerosis.66 From a cellular and mo-
lecular perspective, fibrinogen may affect the 
plaque phenotype through several distinct mech-
anisms: favoring the permeability of endothelial 
cells, extracellular accumulation of low-density li-
poprotein (LDL) cholesterol, and the formation of 
foam cells; inducing the migration of monocytes 
and VSMCs; increasing platelet reactivity or aggre-
gation; and enhancing inflammation67 (Fig. 3). 
Studies in animals have shown distinct results 
on the role of fibrinogen in atherosclerosis, with 
some studies indicating that fibrinogen deficien-
cy in transgenic mice is associated with accel-
erated atherogenesis in a thrombin-dependent 
manner,68 and others showing that fibrinogen 
deficiency is not a prerequisite for the develop-
ment of advanced atherosclerotic plaque.69 In-
creased plasma levels of d-dimer fragments are 
also associated with enhanced inflammation 
and an increased incidence of cardiovascular dis-
ease and are considered a biomarker of athero-
thrombosis.70 However, the effect of fibrin deg-
radation products on the vascular-wall phenotype 
is less clear. Although the results of one study 
suggested that d-dimers promote a proathero-
genic phenotype in human monocytes,71 other 
studies have shown that both fragments D and E 
may prevent the proliferation of VSMCs in vitro.72

Finally, blood coagulation factor XIII may 
also be related to atherogenesis. Factor XIII not 
only cross-links fibrin chains to fibrin on activa-
tion, which contributes to clot stability, but also 
appears to facilitate the formation of hyperactive 
dimers of angiotensin II type 1 receptor, thus 

The New England Journal of Medicine 
Downloaded from nejm.org on July 25, 2011. For personal use only. No other uses without permission. 

 Copyright © 2011 Massachusetts Medical Society. All rights reserved. 



mechanisms of disease

n engl j med 364;18 nejm.org may 5, 2011 1753

leading to chronic sensitization of circulating 
monocytes and exacerbating atherosclerosis.73

Con tac t Ac ti vation (In tr insic) 
Path wa y

The contact activation pathway is considered non-
essential for hemostasis in vivo (Fig. 1C and Fig. 4). 
However, it may be involved in the pathogenesis 
of arterial thrombosis.14 Although experimental 
data have clearly shown that mice deficient in 
factor XII are protected against arterial thrombo-
sis and stroke,14 in several epidemiologic studies, 
data on the association between factor XII and 
the risk of cardiovascular disease in humans are 
inconsistent.74-76 Although additional research is 
needed in this field, the pharmacologic inhibition 
of factor XII activation represents a potential ther-
apeutic target,77,78 considering that hereditary de-
ficiency of factor XII is not associated with bleed-
ing disorders or other pathologic conditions.

At a molecular level, factor XII influences 
distinct processes mostly through the plasma kal-
likrein–kinin system.79 Factor XII–mediated bra-
dykinin formation not only regulates vasodilata-
tion and vascular permeability but also induces 
activation of the complement and fibrinolytic sys-
tems by activating components C3 and C5 and 
facilitating the synthesis of tissue-type plasmino-
gen activator from endothelial cells, whereas 
kallikrein activates urokinase-type plasminogen 
activator and plasminogen. Platelet-derived inor-
ganic polyphosphates80 and misfolded proteins, 
which are found abundantly in atherosclerotic 
arteries,81 can also activate factor XII, leading to 
kallikrein formation without triggering coagula-
tion.82 Levels of tissue kallikrein and plasma 
prekallikrein are associated with the severity of 
cardiovascular disease83,84 and have been found 
to be critical in the process of vascular repair.85 
Given the proangiogenic and proinflammatory 
nature of factor XII86 and the plasma kallikrein–
kinin system, chronic stimulation of these re-
sponses may promote a proatherogenic intraar-
terial environment over time.

A n ticoagul a n t Path wa ys 
in Va scul a r Infl a mm ation

Tissue factor pathway inhibitor (TFPI), which is 
widely distributed in healthy arterial vessels, tends 
to be overexpressed in atherosclerotic lesions87 

(Fig. 5A). Although TFPI is expressed on endo-
thelial cells, VSMCs, and macrophages in the fi-
brous cap and shoulder areas of the plaques, it 
also colocalizes with tissue factor and attenuates 
its activity within atherosclerotic lesions.30,96,97

This finding suggests a role for TFPI not only in 
the regulation of tissue factor procoagulant ac-
tivity but also in the control of tissue factor– 
induced proatherogenic signaling. The adminis-
tration of recombinant TFPI has reduced the rates 
of inflammation and death in an animal model 
by decreasing the expression of tumor necrosis 
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Figure 4. Contact Activation Pathway and Its Proinflammatory 
and Proangiogenic Properties.

The contact system plays a role in various physiologic processes, such as 
blood-pressure regulation, coagulation, fibrinolysis, angiogenesis, and in-
flammation. It consists of factor XII, prekallikrein, and high-molecular-weight 
kininogen. The activation of the proinflammatory kallikrein–kinin and com-
plement systems is triggered by the proteolytic cleavage of factor XII (auto-
activation) in reaction to contact with negatively charged artificial or bio-
logic surfaces. The gray circle indicates the inactive form of a coagulation 
protein, and green circles indicate the active form. Green circles with plus 
signs indicate either positive-feedback reactions or induction of a process.
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factor α (TNF-α), chemokines, and myeloperoxi-
dase.88 Moreover, TFPI is a potent inhibitor of 
matrix metalloproteinases, which are considered 
key players in plaque destabilization and athero-
thrombotic complications. Decreased TFPI expres-
sion has been associated with up-regulation of the 
synthesis of matrix metalloproteinases in plaques 
with a vulnerable phenotype. In addition, TFPI 
has inhibited endothelial migration and angio-
genesis in mice. Several studies in animals have 
shown that TFPI attenuates neointimal hyperpla-
sia and stenosis but also suppresses the release 
of proatherogenic platelet-derived growth factor 
BB, CCL2, and matrix metalloproteinase 2.98-101 
In agreement with these findings, TFPI-deficient 
mice have significantly more atherosclerotic 
plaques than control mice,102 whereas vascular-
directed TFPI overexpression appears to regulate 
lipoprotein clearance and temporarily lowers 
plasma cholesterol levels, also reducing athero-
sclerotic plaque development.103 Clinical data 
suggest that plasma TFPI is a marker of endothe-
lial dysfunction; high levels of both free and total 
TFPI levels are associated with an increased athero-
sclerotic burden and coronary-artery calcifica-

tion,104,105 whereas low levels of total TFPI are 
associated with an increased risk of athero-
thrombosis.106,107

In addition to its anticoagulant properties, 
the protein C pathway is known for its protective 
effects on vascular gene-expression profiles in-
volving antiapoptotic and antiinflammatory re-
sponses, as well as its stabilizing effect on the 
endothelial barrier (Fig. 5B).108 Studies of ath-
erosclerosis have shown a substantial down-
regulation of the local expression of endothelial 
protein C receptor and thrombomodulin within 
atherosclerotic vessels, suggesting impaired ac-
tivation of protein C and hence a reduced anti-
atherogenic response. Several mechanisms, such 
as enhanced shedding of thrombomodulin from 
dysfunctional endothelium, an abundance of LDL-
cholesterol deposits, and local inflammation with-
in the arterial wall, may account for the attenu-
ation of the anticoagulant activities of protein C 
within the atherosclerotic plaque. Overexpression 
of thrombomodulin has been shown to limit 
neointimal formation in rabbits,109 whereas a 
genetic impairment of the protein C–activating 
cofactor function of thrombomodulin, resulting 

Figure 5 (facing page). Anticoagulant Pathways and Their Nonhemostatic Features.

The regulation of coagulation operates at three levels: inhibition of thrombin, factor Xa, and factor IXa by antithrom-
bin; inhibition of factor Xa, the tissue factor–factor VIIa (TF–FVIIa) complex, and hence thrombin formation by tis-
sue factor pathway inhibitor; and proteolytic inactivation of factor V and factor VIII by activated protein C. As shown 
in Panel A, antithrombin is a serine protease that inhibits key coagulation enzymes such as thrombin, factor Xa, and 
factor IXa. Its action is amplified by as much as 4000 times in the presence of heparin or heparin-like substances, 
such as heparan sulfate proteoglycan. Antithrombin has apparent antiinflammatory effects,88 as seen in an increase 
in the release of prostacyclin and a decrease in nuclear factor κB signaling, which is known to have multiple proinflam-
matory responses. Similar effects have been found after the administration of synthetic direct thrombin inhibitors, 
which has contributed to plaque stability in vivo.55 Antithrombin attenuates leukocyte recruitment during inflamma-
tion, which hints at another potential atheroprotective role. Heparin also stimulates the release from endothelial 
cells of tissue factor pathway inhibitor, which then binds to factor Xa and the TF–FVIIa complex to form an inactive 
quaternary complex, thus showing a multitude of antiatherogenic functions. Like antithrombin, heparin cofactor II 
has the ability to inactivate thrombin, factor Xa, and factor IXa, whereas the plasma form of heparin cofactor II is an 
inefficient inhibitor in the absence of glycosaminoglycans (e.g., heparan sulfate and dermatan sulfate). Heparin co-
factor II is implicated both in vascular remodeling and in atherogenesis. Mice that are deficient in heparin cofactor II 
have enhanced intimal hyperplasia after vascular injury.89 Such mice have increased neointima formation and en-
hanced atherogenesis, as compared with control mice. However, the findings in clinical studies have been inconsis-
tent, with some indicating that heparin cofactor II is a strong predictive marker against atherosclerosis90,91 and one 
indicating that its presence is not predictive.92 Protein Z is a cofactor of another protein, named protein Z–related 
protease inhibitor, which inhibits factor Xa and factor XIa in the coagulation cascade. Although the roles of protein 
Z and protein Z–related protease inhibitor in inflammation and the onset of atherosclerosis are poorly understood, 
a few clinical trials have shown a significant inverse relationship between levels of these proteins and the clinical se-
verity of atherosclerosis.93-95 As shown in Panel B, thrombin also behaves as an anticoagulant molecule physiologi-
cally. Binding to the endothelial protein C receptor, protein C is transformed into activated protein C by an activation 
complex established between thrombin and thrombomodulin. This process is followed by dissociation of activated 
protein C from the endothelial protein C receptor and the formation of a complex between activated protein C and 
protein S. The latter allows the inactivation of factor Va and factor VIIIa and thus limits further thrombin generation. 
Gray circles indicate the inactive form of a coagulation protein, and green circles indicate the active form.
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in diminished formation of activated protein C, 
is associated with an increased atherosclerotic 
burden in mice.31

The determinants of soluble levels of throm-
bomodulin in patients with atherosclerosis are 
poorly understood. The results of various clini-
cal studies that have examined the relationship 
between thrombomodulin and the extent of ath-
erosclerotic burden have been inconsistent.110-114 
In monkeys, progressive atherosclerosis is asso-
ciated with impaired formation of activated pro-
tein C, whereas dietary regression of atheroscle-
rosis was found to enhance the anticoagulant 
response.115 Mice with a heterozygous deficiency 
in protein C have enhanced focal arterial inflam-
mation and thrombosis, leading to increased neo-
intima formation and localized thrombosis.116 
In agreement with these findings, several clini-

cal studies have confirmed a significant associa-
tion between circulating low levels of activated 
protein C and a greater extent or severity of ath-
erosclerosis.117-119

Furthermore, protein S, which has been de-
scribed as linking hemostasis, inflammation, and 
apoptosis, forms a complex with the complement 
system regulator C4b-binding protein (C4BP), 
a major inhibitor of the classical complement 
pathway, localizing it on the surface of apoptotic 
cells120 and thus promoting phagocytic activity 
by macrophages.121 Intriguingly, protein S sig-
nificantly inhibits the expression of macrophage 
scavenger receptor A and diminishes the uptake 
of acetylated LDL cholesterol mediated by this re-
ceptor, resulting in a decreased intracellular lipid 
content in macrophages.122 These actions are 
mostly attributable to the ability of protein S to 
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bind to and induce phosphorylation of the Mer 
receptor tyrosine kinase. In addition, protein S 
plays a role in the protection of the integrity of the 
blood–brain barrier.123 The expression of protein S 
is reduced within atherosclerotic plaques obtained 
from patients with unstable angina, as compared 
with specimens from patients with stable angi-
na.124 Hereditary deficiency of both proteins C 
and S has been associated with an increased inci-
dence in arterial thromboembol ic events125 and 
peripheral-artery disease (Fig. 5B).89-95,126

Fu t ur e Per spec ti v es

Hemostasis is anatomically and functionally en-
twined with the vasculature. Besides its essential 
roles in protecting vascular integrity and main-
taining normal blood flow, accumulating data 
suggest an intimate cross-talk between hemosta-
sis and inflammation, underscoring the role of 
both systems in many complex diseases, includ-
ing atherothrombosis. Intriguingly, numerous 
studies in animals have also documented that he-
mostasis is closely linked to the pathophysiology 
of atherogenesis. Is this association, mostly based 
on experimental data, corroborated by clinical 
data as well?

The current concept of a vulnerable plaque sug-
gests that repeated plaque microruptures, fol-
lowed by subclinical thrombosis, are critical for 
plaque growth and vulnerability.127-129 In agree-
ment with these findings, histopathological stud-
ies showed that two thirds of coronary thrombi 
obtained from patients who died suddenly from 
cardiovascular causes were in later stages of matu-
ration, suggesting that thrombi may exist long 
before a rupture occurs.33,34 In addition, the con-
temporary understanding of atherothrombosis 
has evolved substantially, establishing new roles 
for the hemostatic system beyond thrombosis. 
We have summarized the potential array of ac-
tions of hemostasis in relation to the phenotype 
of the atherosclerotic vascular wall, presumably 
linked to plaque stability. But is all of this clini-
cally relevant?

Antithrombotic therapy with the use of anti-
platelet or anticoagulant agents is the key to 
atherothrombosis prevention in various clinical 
situations.130-133 The role of antiplatelet therapy 
in secondary prevention is no longer questioned, 
given the strong overall effect of drugs such as 
aspirin.134 A meta-analysis of primary-prevention 

trials has indicated that the use of aspirin is as-
sociated with a reduction of approximately 30% 
in the risk of myocardial infarction, with more 
limited effects on the risk of stroke.135 In addi-
tion to aspirin’s antiplatelet actions, the efficacy 
of this drug may be due in part to its antiin-
flammatory actions.136-138 It is difficult to dis-
sect the contribution of platelets in any of these 
antiinflammatory effects of aspirin. Also, for 
more selective antiplatelet drugs, including clopi-
dogrel, prasugrel, and ticagrelor, which target 
platelet receptors, resulting in impaired platelet 
activation, antiinflammatory and atherosclero-
sis-delaying effects have been reported.139 How-
ever, clinical trials of platelet inhibitors for the 
prevention of atherosclerosis progression have not 
shown diminished development of plaque with 
any consistency.140

For many years, oral anticoagulants have been 
used for short- and long-term indications. Studies 
of heparin and vitamin K antagonists have shown 
that short-term use of these drugs is not likely 
to have a major effect on chronic disorders such 
as atherosclerosis.141,142 Despite the fact that long-
term administration of vitamin K antagonists 
did not have any visible effects on angiographic 
progression in patients who had undergone coro-
nary-artery bypass grafting, an additional follow-
up assessment 3 years after discontinuation of 
therapy showed a significant 35% reduction in 
overall mortality in the warfarin group.143 Given 
the powerful effects on risk reduction in throm-
botic cardiovascular outcomes, one might specu-
late that this effect was at least partially medi-
ated by effects of vitamin K antagonists on plaque 
phenotype rather than plaque size. At the same 
time, the principal vascular side effect of the 
long-term administration of these drugs is ac-
celerated calcification. This effect is mainly due 
to direct inhibition of other vitamin K–dependent 
proteins in the vessel wall, including matrix Gla 
protein. It is not known whether any additional 
influence of inhibition of thrombin formation 
may occur.144,145 The role of the hemostatic system 
in atherosclerosis in humans requires further 
investigation. Only a handful of molecules rele-
vant to hemostasis are targeted by existing medi-
cations. As more specific interventions are devel-
oped, new therapeutic avenues and research 
approaches may open up. With the introduction 
of new oral anticoagulants (e.g., direct inhibitors 
of factor Xa and thrombin),146,147 which are small 
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molecules that can access the vessel wall, it will 
be possible to document the effects of these drugs 
on plaque formation and especially on plaque 
stability. Since both thrombin inhibition55 and a 
prothrombotic state31 have been suggested as pro-
moters of plaque stability in atherogenic mice, the 
net effects in humans, if any, are unpredictable.

In conclusion, given the potential of hemosta-
sis to influence molecular and cellular responses 
in the vasculature, new scientific approaches are 
required. Notably, the majority of experimental 
data are entirely based on quantification of plaque 
burden, rather than on extensive phenotyping of 
the lesions. This is a major drawback in vascular 
medicine. Furthermore, most clinical studies pre-
dominantly focus on establishing the thrombotic 
and mortality outcomes, whereas few investigate 
plaque progression. During the past decade, ul-

trasonography has been a major tool in vascular 
imaging. Unfortunately, this approach is charac-
terized by poor tissue penetration, providing no 
information on plaque characteristics, and is sub-
ject to intraobserver and interobserver variability. 
With the development of high-resolution magnetic 
resonance imaging, the assessment of plaque 
characteristics will improve vessel-wall phenotyp-
ing as a means of addressing the role of the 
hemostatic system in atherosclerosis.
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