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Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize
a large number of mammals. In humans, L. reuteri is found in different body sites,
including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance
of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri
have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic
acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to
inhibit the colonization of pathogenic microbes and remodel the commensal microbiota
composition in the host. Second, L. reuteri can benefit the host immune system.
For instance, some L. reuteri strains can reduce the production of pro-inflammatory
cytokines while promoting regulatory T cell development and function. Third, bearing
the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease
the microbial translocation from the gut lumen to the tissues. Microbial translocation
across the intestinal epithelium has been hypothesized as an initiator of inflammation.
Therefore, inflammatory diseases, including those located in the gut as well as in remote
tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the
decrease in the abundance of L. reuteri in humans in the past decades is correlated
with an increase in the incidences of inflammatory diseases over the same period of
time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive
preventive and/or therapeutic avenue against inflammatory diseases.
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INTRODUCTION

Probiotics are defined as “live microorganisms which, when administered in adequate amounts,
confer a health benefit on the host” by the World Health Organization. While the idea to use
probiotics for health benefits is not new, the interest has significantly increased in recent years
(Islam, 2016). This may be due, in part, to the increase in antibiotic resistance particularly in the
treatment of diseases in the gastrointestinal (GI) system, as well as an increasing desire by the
public for natural health promotants. Those probiotic microorganisms that have been shown to
have beneficial properties include Lactobacillus spp., Bifidobacterium spp., Saccharomyces boulardii,
Propionibacterium spp., Streptococcus spp., Bacillus spp., Enterococcus spp., and some specific strains
of Escherichia coli (Kechagia et al., 2013).

There are certain criteria that a probiotic must have to be considered efficacious. These
include the capacity to survive in the GI tract, a high resistance to gastric acids, the lack
of any transferable antibiotic resistance genes, and the capacity to exert clear benefits in the
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host (Montalban-Arques et al., 2015). Probiotics promote
a healthy body through diverse mechanisms. A widespread
generalization describing common mechanisms among studied
probiotic genera includes colonizing resistance, producing
acid, and short chain fatty acid (SCFA), regulating intestinal
transit, normalizing perturbed microbiota, increasing enterocyte
turnover, and competitive exclusion of pathogens (Hill et al.,
2014). Though not widely observed, there are a lot of effects
among specific probiotic species, some being strain specific. For
instance, some probiotic strains can improve host food digestion
by metabolizing bile salt or complementing the functions of
missing digestive enzymes (Amara and Shibl, 2015; Shi et al.,
2016).

Lactobacillus spp. are one of the most widely used probiotics
and can be found in a large variety of food products throughout
the world (Giraffa et al., 2010). The genus Lactobacillus comprises
a large heterogeneous group of Gram-positive, nonsporulating,
facultative anaerobic bacteria which include L. acidophilus,
L. rhamnosus, L. bulgaricus, L. casei, and L. reuteri. This genus
plays a very important role in food fermentation and can also
be found in the GI system of humans and animals in variable
amounts depending on the species, age of the host, or location
within the gut (Duar et al., 2017).

Animal studies and preclinical results have shown that
Lactobacilli may help in the prevention and treatment of
numerous GI tract disorders. Among these disorders are
enteric infections, antibiotic-associated diarrhea, necrotizing
enterocolitis in preterm neonates, inflammatory bowel disease,
colorectal cancer, and irritable bowel syndrome (Lebeer et al.,
2008). Although the GI tract is the site where Lactobacilli
are believed to show the most benefits, probiotic applications
of some Lactobacillus strains at other sites of the body have
been reported. These include the prevention and treatment of
urogenital diseases and bacterial vaginosis in women, atopic
disease, food hypersensitivity, and the prevention of dental caries
(Lebeer et al., 2008).

One species of Lactobacillus, L. reuteri has multiple beneficial
effects on host health such as prevention and/or amelioration
of diverse disorders. L. reuteri was first isolated in 1962. It
has been characterized as heterofermentative species that grows
in oxygen-limited atmospheres and colonizes the GI tract of
humans and animals (Kandler et al., 1980). The fact that it
normally colonizes the GI tract may be the reason it confers great
probiotic properties. This organism can withstand a wide variety
of pH environments, employs multiple mechanisms that allow it
to successfully inhibit pathogenic microorganisms, and has been
shown to secrete antimicrobial intermediaries (Jacobsen et al.,
1999; Valeur et al., 2004).

L. reuteri has been shown to be one of the truly indigenous
bacteria of the human GI tract (Sinkiewicz, 2010). It naturally
colonizes a wide range of vertebrates, including pigs, rodents,
and chickens. In fact, it has gone through long-term evolution to
diversify into host-adapted lineages (Oh et al., 2010; Walter et al.,
2011). This organism is most typically found in the proximal
digestive tract of the host (Frese et al., 2013). Several studies have
assessed the safety of this organism in adults, children, infants,
and even in an HIV-infected population (Wolf et al., 1998;

Valeur et al., 2004; Weizman and Alsheikh, 2006; Mangalat et al.,
2012; Jones et al., 2012a,c; Hoy-Schulz et al., 2016). The results
showed that a dose as high as 2.9 × 109 colony-forming units
(cfu)/day was still well tolerated, safe, and efficacious in humans.
There have also been numerous articles enumerating the benefits
of L. reuteri as a probiotic. These benefits include promoting
health, reducing infections, improving feed tolerance, enhancing
the absorption of nutrients, minerals, and vitamins, modulating
host immune responses, promoting gut mucosal integrity, and
reducing bacterial translocation (Tubelius et al., 2005; McFall-
Ngai, 2007; Indrio et al., 2008; Spinler et al., 2008; Hou et al.,
2015). In the current review, we will focus on the particular
probiotic, L. reuteri, and discuss its beneficial functions in
promoting health and preventing infections and diverse diseases.

PROBIOTIC PROPERTIES OF L. reuteri

There are some prerequisites for becoming potential probiotics:
to survive in low pH and enzyme-enriched environments, to
adhere to epithelium for host-probiotic interaction, competition
with pathogenic microorganisms, and most importantly, safety.
L. reuteri meets all of these requirements. Here, additional
probiotic properties of L. reuteri are discussed that contribute to
its diverse beneficial effects on host health and disease prevention
and/or amelioration (Figure 1).

Gut Colonization of L. reuteri
Built for digestion and absorption, some sites of the GI system
have developed to be harsh for microorganism colonization.
Examples of this can be seen in the low pH conditions caused
by gastric acids and bile salts in upper small intestine. Thus, the
very first step of colonizing the GI tract is to survive in such
environments. Multiple L. reuteri stains are resistant to low pH
and bile salts (Seo et al., 2010; Krumbeck et al., 2016). This
resistance is believed to be at least partially dependent on its
ability to form biofilms (Salas-Jara et al., 2016).

L. reuteri is capable of attaching to mucin and intestinal
epithelia, and some strains can adhere to gut epithelial cells in
a range of vertebrate hosts (Li et al., 2008; Hou et al., 2014, 2015).
A possible mechanism for adherence is the binding of bacterial
surface molecules to the mucus layer. Mucus-binding proteins
(MUBs) and MUB-like proteins, encoded by Lactobacillales-
specific clusters of orthologous protein coding genes, serve as
adherence mediators, or so-called adhesins (Roos and Jonsson,
2002; Kleerebezem et al., 2010; Gunning et al., 2016). The
considerable diversity of MUBs among L. reuteri strains and the
variation in the abundance of cell-surface MUBs significantly
correlates with their mucus binding ability (Mackenzie et al.,
2010). The strain-specific role of MUBs in recognizing mucus
elements and/or their capability of promoting aggregation can
explain the contribution of MUBs on the adherence of L. reuteri.
Factors that mediate the attachment to the surfaces include
multiple large surface proteins (Walter et al., 2005; Wang
et al., 2008; Frese et al., 2011), MUB A (Jensen et al., 2014),
glucosyltransferase A (GtfA) and inulosucrase (Inu) (Walter
et al., 2008), and D-alanyl ester (Walter et al., 2007).
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FIGURE 1 | Probiotic properties of L. reuteri.

As L. reuteri that has colonized to the host GI tract can
form biofilms, efforts have been made to study the regulation of
L. reuteri biofilm secretion and its association with the adherence
of bacteria to host GI epithelium. By doing in vitro biofilm assay,
Water, J. et al. uncovered the contribution of GtfA and Inu in the
biofilm formation of L. reuteri TMW1.106 (Walter et al., 2008).
The in vivo biofilm formation of L. reuteri strains seems to be
dependent on the host origin of the strains. In one study, nine
L. reuteri strains isolated from different hosts (human, mouse, rat,
chicken, and pig) were given to germ-free mice and the biofilms
were evaluated after 2 days. Interestingly, only rodent strains were
able to form biofilms and adhere to the forestomach epithelium,
although the luminal populations were comparable among
strains of different origins (Frese et al., 2013). Another study by
the same authors showed that a specialized transport pathway
(the SecA2-SecY2 system) was unique in the rodent and porcine
strains (Frese et al., 2011). By using a rodent strain L. reuteri
100-23, they compared extracellular and cell wall-associated
proteins between the wild-type strain and the secA2 mutant.
Only one surface protein, L. reuteri 70902, was absent in the
secA2 mutant. In vivo colonization studies showed that the
absence of L. reuteri 70902 leads to almost completely eliminated
biofilm formation. This strongly suggests that L. reuteri 70902
and the SecA2-SecY2 system are key factors regulating biofilm
production from L. reuteri 100-23 in germ-free mice (Frese et al.,
2013). Another group investigated the role of two-component
systems bfrKRT and cemAKR in in vitro biofilm formation of
L. reuteri 100-23 (Su and Ganzle, 2014). They found the deletion
of certain genes in the operons enhanced the adherence and

biofilm formation. However, the contribution of the bfrKRT and
cemAKR to in vivo biofilm formation remains to be elucidated.
The role of exopolysaccharide (EPS) in assisting colonization was
also examined with L. reuteri 100-23. The production of EPS was
eliminated due to a mutation of the fructosyl transferase (ftf )
gene (Sims et al., 2011). After administration to Lactobacillus-free
mice, compared to the wild-type strain, the colonization of the ftf
mutant in the forestomach and cecum was largely impaired. This
indicates EPS production can enhance the colonizing ability of
strain 100-23 in the gut. Interestingly, L. reuteri RC-14 has been
demonstrated to be able to penetrate mature E. coli biofilm and
become part of it (McMillan et al., 2011). Recently, L. reuteri
was delivered as a biofilm on microsphere and such delivery
was found to promote the adherence of L. reuteri to intestinal
epithelium and enhance its probiotic property (Olson et al., 2016;
Navarro et al., 2017).

Production of Metabolites With
Health-Promoting Effect
The antimicrobial and immunomodulatory effects of L. reuteri
strains are linked to their metabolite production profile. Here, we
discuss a few well-studied metabolites with regard to the probiotic
potential of L. reuteri.

Reuterin
Most L. reuteri strains of human and poultry lineage are able
to produce and excrete reuterin, a well-known antimicrobial
compound (Talarico et al., 1988; Talarico and Dobrogosz,
1989; Cadieux et al., 2008; Jones and Versalovic, 2009;
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Mishra et al., 2012; Greifova et al., 2017). Reuterin is a mixture of
different forms of 3-hydroxypropionaldehyde (3-HPA) (Talarico
and Dobrogosz, 1989). It is known that L. reuteri can metabolize
glycerol to generate 3-HPA in a coenzyme B12-dependent,
glycerol dehydratase-mediated reaction (Talarico and Dobrogosz,
1990; Chen and Chen, 2013). The production of 3-HPA has also
been demonstrated in a few other bacterial species (Zhu et al.,
2002; Raynaud et al., 2003; Yang et al., 2007). However, L. reuteri
is unique in its ability to produce and secrete 3-HPA in a manner
more than its bioenergetics requirement (Stevens et al., 2011).
Moreover, the antimicrobial activity of reuterin seems to rely on
the spontaneous conversion of 3-HPA to acrolein, a cytotoxic
electrophile (Stevens and Maier, 2008; Engels et al., 2016).
Reuterin can inhibit a wide range of microorganisms, mainly
Gram-negative bacteria (Cleusix et al., 2007). Not surprisingly,
most Lactobacillus species are resistant to reuterin, among which
L. reuteri strains exert the most resistance (Jones and Versalovic,
2009; Mishra et al., 2012). In addition to its antimicrobial
property, reuterin is able to conjugate heterocyclic amines, which
also seems to be dependent on the formation of acrolein (Engels
et al., 2016). This suggests acrolein is an essential compound in
the activity of reuterin.

Apart from reuterin, several other antimicrobial substances,
including lactic acid, acetic acid, ethanol, and reutericyclin, have
been determined as products of some L. reuteri strains (Ganzle
and Vogel, 2003; Burge et al., 2015; Gopi et al., 2015; Yang Y.
et al., 2015; Greifova et al., 2017). With the synthesis of these
substances, L. reuteri has been shown to be effective against
a variety of GI bacterial infections. These infections include
Helicobacter pylori, E. coli, Clostridium difficile, and Salmonella
(Reid and Burton, 2002; Cherian et al., 2015; Abhisingha et al.,
2017; Genis et al., 2017). One of the more notable illustrations
of the efficacy of L. reuteri as a probiotic against infections is
the use of L. reuteri to treat H. pylori. H. pylori infection is
a major cause of chronic gastritis and peptic ulcers, as well as
a risk factor for gastric malignancies (Franceschi et al., 2007;
Lesbros-Pantoflickova et al., 2007; Park et al., 2007). The use
of L. reuteri against H. pylori has been explored in many
studies (Table 1). It has been suggested that L. reuteri works by
competing with H. pylori and inhibiting its binding to glycolipid
receptors (Mukai et al., 2002). The competition reduces the
bacterial load of H. pylori and decreases the related symptoms
(Lionetti et al., 2006; Francavilla et al., 2008). Some studies have
shown that L. reuteri has the potential to completely eradicate
H. pylori from the intestine (Ojetti et al., 2012). Importantly,
L. reuteri is advantageous in the treatment of H. pylori as
the supplementation eradicates the pathogen without causing
the common side effects associated with antibiotic therapies
(Francavilla et al., 2014).

A considerable amount of research has been done to
determine the beneficial effects of L. reuteri against viruses and/or
fungi. There is evidence showing the benefit of L. reuteri against
pneumoviruses, circoviruses, rotaviruses, coxsackieviruses, and
papillomaviruses (Shornikova et al., 1997a,b; Preidis et al., 2012;
Ang et al., 2016; Brenner et al., 2016; Piyathilake et al., 2016;
Karaffova et al., 2017). It has been suggested that L. reuteri
ameliorates viral infection by regulating the microbiota and

secreting metabolites that have antiviral components (Ang et al.,
2016). Furthermore, some studies suggest that L. reuteri may have
antifungal properties as well, where L. reuteri antagonizes, stops
the growth of, and eventually kills various species of Candida
(Jorgensen et al., 2017).

Histamine
A few strains of L. reuteri are able to convert the amino
acid L-histidine, a dietary component, to the biogenic amine
histamine (Diaz et al., 2016; Greifova et al., 2017). A human
commensal bacterium, L. reuteri 6475 was used as the model
strain for studying histamine in L. reuteri. J. Versalovic’s group
reported that L. reuteri 6475-derived histamine suppressed
tumor necrosis factor (TNF) production from stimulated
human monocytes (Thomas et al., 2012). This suppression
was dependent on the activation of histamine H2 receptor,
increased intracellular cAMP and protein kinase A, and the
inhibition of MEK/ERK signaling. The production of histamine
and subsequent in vitro TNF-suppressing function are regulated
by a complete chromosomal histidine decarboxylase (hdc) gene
cluster, which contains hdcA, hdcB, and hdcP (Rossi et al., 2011;
Thomas et al., 2012). The same group of researchers also found
that oral administration of hdc+ L. reuteri could effectively
suppress intestinal inflammation in a trinitrobenzene sulfonic
acid (TNBS)-induced mouse colitis model (Gao et al., 2015).
Moreover, intraperitoneal injection of L. reuteri 6475 culture
supernatant to TNBS-treated mice resulted in similar colitis
attenuation. These results strongly indicate the involvement
of L. reuteri metabolites, including histamine, in intestinal
immunomodulation (Thomas et al., 2016). Further investigations
showed that a gene called rsiR was necessary for the expression
of hdc gene cluster in L. reuteri 6475 (Hemarajata et al.,
2013). Inactivation of rsiR gene led to reduced TNF inhibition
in vitro and diminished anti-inflammatory function in vivo.
Additionally, both the in vitro TNF suppression and the in vivo
anti-colitis effects appear to be regulated by a gene named folC2
(Thomas et al., 2016). Inactivation of folC2 gene resulted in
suppression of the hdc gene cluster and diminished histamine
production. Notably, histamine production by L. reuteri is highly
strain-dependent, and most studies have been focused on strains
of human origin (Mishra et al., 2012).

Vitamins
There are 13 essential vitamins for humans due to the inability
of the human body to synthesize them (Linares et al., 2017).
Like many other Lactobacillus spp., several L. reuteri strains are
able to produce different types of vitamins, including vitamin
B12 (cobalamin) and B9 (folate). As mentioned earlier, B12 is
vital in reuterin production because the reduction of glycerol to
3-HPA requires a B12-dependent coenzyme. Up to now, at least 4
L. reuteri strains with various origins have been found to produce
B12 (Taranto et al., 2003; Santos et al., 2008b; Sriramulu et al.,
2008; Gu et al., 2015). Among these strains, L. reuteri CRL1098
and L. reuteri JCM1112 are the most studied (Morita et al., 2008;
Santos et al., 2008a, 2011). In one study, the administration of
L. reuteri CRL1098 together with a diet lacking vitamin B12
was shown to ameliorate pathologies in B12-deficient pregnant
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TABLE 1 | Clinical efficacies of L. reuteri against H. pylori.

Strain Treatment Subjects Result Citation

DSM 17648 14 days Adults Decrease in pathogen load in the stomach Holz et al., 2015

DSM 17938 20 days Patients 93% successful eradication of the pathogen
with inhibitor-tetracycline-metronidazole –
L. reuteri therapy

Dore et al., 2016

ATCC 55730 10 days Infected children Improvement of GI symptoms Lionetti et al., 2006

– 7 days Patients No improvement of the standard triple therapy Scaccianoce et al., 2008

ATCC 55730 4 weeks Patients Significant decrease of pathogen load and
improvement of dyspeptic symptoms

Francavilla et al., 2008

SD2112 4 weeks Patients Decrease of pathogen density and suppression
of urease activity

Imase et al., 2007

DSMZ 17648 14 days Patients Decrease in pathogen load Mehling and Busjahn, 2013

DSM 17938, ATCC PTA 6475 During therapy Patients Reduction of antibiotic-associated side effects
in eradication therapy

Francavilla et al., 2014

DSM 17938 8 weeks Patients Decrease of urease activity in pantoprazole
therapy

Dore et al., 2014

female mice and their offspring (Molina et al., 2009). This clearly
points to the potential application of L. reuteri in treating B12
deficiency. In addition to B12, folate can also be synthesized by
some specific L. reuteri strains, including L. reuteri 6475 and
L. reuteri JCM1112 (Santos et al., 2008b; Thomas et al., 2016).

Exopolysaccharide (EPS)
The EPS produced by L. reuteri is important for biofilm
formation and adherence of L. reuteri to epithelial surfaces (Salas-
Jara et al., 2016). In addition, EPS synthesized by L. reuteri is
able to inhibit E. coli adhesion to porcine epithelial cells in vitro
(Ksonzekova et al., 2016). More importantly, EPS-mediated
blocking of adhesion also suppresses gene expression of pro-
inflammatory cytokines that are induced by E. coli infection,
including IL-1β and IL-6. Further in vivo experiments in piglets
showed similar results in that EPS originated from L. reuteri
prevented piglet diarrhea in bacterial infection by reducing the
adhesion of E. coli (Chen et al., 2014). In addition, EPS of
L. reuteri origin has been reported to suppress the binding of
enterotoxigenic E. coli to porcine erythrocytes (Wang et al., 2010).
EPS produced by rodent L. reuteri 100-23 was also demonstrated
to induce Foxp3+ regulatory T (Treg) cells in the spleen (Sims
et al., 2011). In contrast, an L. reuteri 100-23 strain with the
ftf mutation that eliminates EPS production from L. reuteri did
not induce splenic Treg cells. This suggests that EPS is required
for the L. reuteri-mediated induction of Treg cells and indicates
the potential of using wild-type L. reuteri 100-23 to treat Treg
deficiency.

L. reuteri-Mediated Modulation of Host
Microbiota
Emerging evidence suggests that the host microbiota and
immune system interact to maintain tissue homeostasis in
healthy individuals (Kamada et al., 2013; Bene et al., 2017). Many
diseases have been associated with perturbation of the microbiota
(Mu et al., 2015), whereas restoration of the microbiota has
been demonstrated to prevent or ameliorate several diseases
(Scott et al., 2015). L. reuteri is able to influence the diversity,

composition and metabolic function of the gut, oral, and vaginal
microbiotas. These effects are largely strain-specific (Yang Y.
et al., 2015; Garcia Rodenas et al., 2016; Galley et al., 2017; Su
et al., 2017).

Gut Microbiota
Studies have shown the modulatory effects of L. reuteri on
the microbiotas of rodents, piglets, and humans. One study
assessed oral administration of a human-origin L. reuteri strain
(DSM17938) to scurfy mice, which have gut microbial dysbiosis
due to the foxp3 gene mutation. The results indicated that this
strain of L. reuteri was able to prolong the lifespan of the
mice and reduce multi-organ inflammation while remodeling
the gut microbiota (He et al., 2017). Changes of gut microbiota
included increases in the phylum Firmicutes and the genera
Lactobacillus and Oscilospira. Notably, the disease-ameliorating
effect of L. reuteri was attributed to the remodeled gut microbiota,
though the community composition was still distinct from
wild-type littermates. Further investigation showed that inosine
production was enhanced by the gut microbiota upon L. reuteri
administration. Through adenosine A2A receptor engagement,
inosine can reduce Th1/Th2 cells and their associated cytokines.
These results suggested that the L. reuteri – gut microbiota –
inosine – adenosine A2A receptor axis serves as a potential
therapeutic method for Treg-deficient disorders. Moreover, oral
L. reuteri 6475 treatment led to a higher diversity of microbiota
in both jejunum and ileum in an ovariectomy-induced bone loss
mouse model (Britton et al., 2014). Specifically, there were more
abundant Clostridiales but less Bacteriodales. However, whether
or not the changed gut microbiota was directly associated
with the prevention of bone loss requires further investigation.
Furthermore, L. reuteri C10-2-1 has been shown to modulate the
diversity of gut microbiota in the ileum of rats (Wang P. et al.,
2016).

Compared to vaginally delivered infants, Cesarean (C)-section
delivered infants display a higher abundance of Enterobacter but
less Bifidobacterium in their gut microbiota (Garcia Rodenas
et al., 2016; Nagpal et al., 2016). In one study, treating C-section
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babies with L. reuteri DSM 17938 from 2 weeks to 4 months
of age modulated the development of gut microbiota toward
the community pattern found in vaginally delivered infants
(Garcia Rodenas et al., 2016). The gut microbiota structure
of vaginally born infants remained unaltered upon L. reuteri
supplementation. In another study, treating infants with the same
L. reuteri strain resulted in decreased anaerobic Gram-negative
and increased Gram-positive bacterial counts in gut microbiota,
whereas the abundances of Enterobacteriaceae and Enterococci
were largely lowered by L. reuteri treatment (Savino et al., 2015b).
The differences in infant age, duration of treatment, route of
administration, and dosage may explain the differences in results
from the two studies.

For human adults, L. reuteri NCIMB 30242 administered
as delayed release capsules for 4 weeks was able to increase
the ratio of Firmicutes to Bacteroidetes in healthy individuals
(Martoni et al., 2015). This strain of L. reuteri is known to be
able to activate bile salt hydrolase and its effect in increasing
circulating bile acid has been reported (Jones et al., 2012b).
The upregulation of circulating bile acid has been proposed
as a reason for the modulated gut microbiota (Jones et al.,
2012b). In type 2 diabetes patients, although 3 months of
L. reuteri DSM 17938 supplementation did not significantly
change the gut microbial structure, the disease outcome of
L. reuteri treatment was highly correlated with the baseline
gut microbiota structure of individuals (Mobini et al., 2017).
Furthermore, the administration of L. reuteri DSM 17938 in
cystic fibrosis (CF) patients rescued gut microbiota dysbiosis
by reducing Proteobacteria while also enhancing the relative
abundance of Firmicutes (del Campo et al., 2014). However,
whether or not the modulated gut microbiota contributed to
improved GI health in probiotic-treated CF patients needs to be
explored further.

L. reuteri influences the gut microbial community in piglets
in a strain-specific manner. For instance, oral L. reuteri
ZLR003 administration was able to change both the diversity
and the composition of the gut microbiota (Zhang et al.,
2016). However, treatment with the I5007 strain did not affect
colonic microbial structure in piglets (Liu H. et al., 2017).
In another study, fodder fermented with L. reuteri changed
the abundances of 6 different bacterial taxa, particularly the
family Enterobacteriacae, in weanling pigs (Yang Y. et al., 2015).
However, the major alterations including increased Mitsuokella
and decreased a family under phylum Bacteroidetes could only be
seen with L. reuteri TMW1.656 rather than L. reuteri LTH5794.
TMW1.656 is a reutericyclin-producing strain while LTH5794
is not, suggesting the possible contribution of reutericyclin
in modulating gut microbiota in piglets (Yang Y. et al.,
2015).

Oral Microbiota
The phyla Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria,
and Actinobacteria are most abundant in the human oral
microbiome (Romani Vestman et al., 2015). In a randomized
controlled trial, 12 weeks of daily consumption of two
L. reuteri strains – DSM 17938 and PTA 5289 led to a
shift in oral microbiota composition, though the bacterial

species richness was not altered (Romani Vestman et al.,
2015). The alterations disappeared 4 weeks after the treatments
were terminated, suggesting the fast turnover of the oral
microbiome. In another human study, oral L. reuteri treatment
reduced the amount of periodontal pathogens in the subgingival
microbiota, though no clinical impact was seen (Iniesta et al.,
2012).

Vaginal Microbiota
Lactobacilli dominate the vaginal bacterial community in healthy
women (Macklaim et al., 2015). One study showed that only
14 days of oral L. reuteri RC-14 administration could restore
the normal vaginal flora in postmenopausal women (Petricevic
et al., 2008). Interestingly, the relative abundance of Lactobacilli
is largely decreased in bacterial vaginosis patients (Macklaim
et al., 2015). A total of 4 weeks of oral capsule consumption
of two Lactobacilli strains including L. reuteri RC-14 increased
the relative abundance of Lactobacilli. A similar increase of
Lactobacilli was seen when L. reuteri RC-14 was administered
vaginally together with a L. rhamnosus strain (Bisanz et al.,
2014). However, in pregnant women, 8 weeks of oral L. reuteri
RC-14 treatment did not efficiently restore the normal vaginal
microbiota (Gille et al., 2016). This suggests that L. reuteri RC-14
may not be able to act alone.

Role of L. reuteri in Immunomodulation
Lactobacillus reuteri is able to increase free secretory IgA
(sIgA) levels in rats (Wang P. et al., 2016). However, the
upregulation of sIgA was eliminated in vitamin A-deficient rats,
suggesting that L. reuteri functions in a vitamin A-dependent
manner. In pregnant women, the intake of L. reuteri did not
alter the levels of total IgA or sIgA in breast milk (Bottcher
et al., 2008). When it comes to the effect of L. reuteri in
inducing salivary IgA, the results are controversial. Increased
salivary IgA levels were reported in humans’ chewing gum
containing L. reuteri (Ericson et al., 2013). However, other
studies showed that L. reuteri did not affect IgA concentration
in saliva (Garofoli et al., 2014; Jorgensen et al., 2016; Braathen
et al., 2017). The difference in the strains of L. reuteri used
in the studies may explain the difference in results. Notably,
an important commonality is that salivary L. reuteri-positive
individuals have higher salivary IgA levels. Whether L. reuteri
affects IgA levels by directly regulating B cells requires further
investigations.

Many studies have shown that L. reuteri can induce
anti-inflammatory Treg cells, which likely contributes to the
beneficial effects of L. reuteri in a wide range of diseased
and non-diseased conditions (Table 2). The Treg-inducing
property of L. reuteri is largely strain-dependent. However, the
anti-inflammatory effect of L. reuteri does not always rely on the
induction of Treg cells. A good example is L. reuteri-mediated
suppression of Th1/Th2 responses in Treg-deficient mice
(He et al., 2017). Certain L. reuteri strains are able to reduce the
production of many pro-inflammatory cytokines. For example,
L. reuteri GMNL-263 can reduce serum MCP-1, TNF, and
IL-6 levels in mice fed with high fat diet (Hsieh et al., 2016).
Similar effects were observed in mice treated with heat-killed
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TABLE 2 | L. reuteri-mediated induction of Treg cells under various diseased and non-diseased conditions.

Condition Subject Tissue Strain Citation

Western-diet-associated obesity Mouse MLN ATCC PTA 6475 Poutahidis et al., 2013b

Wound healing Mouse Biopsy ATCC PTA 6475 Poutahidis et al., 2013a

Systemic lupus erythematosus Mouse Kidney ATCC PTA 6475 Mu et al., 2017c

Necrotizing enterocolitis Mouse Intestine, MLN DSM 17938 Liu et al., 2013, 2014

Wild-type Mouse MLN, Spleen 100-23 Livingston et al., 2010; Sims et al., 2011

Wild-type Mouse Spleen ATCC 23272 Karimi et al., 2009

Wild-type, IBD, atopic dermatitis Mouse MLN, Colon, Ear – Abediankenari and Ghasemi, 2009

IBD Human Peripheral blood RC-14 Lorea Baroja et al., 2007

IBD, inflammatory bowel disease; MLN, mesenteric lymph node.

GMNL-263. However, in some cases, the immunomodulatory
effects of L. reuteri appear to rely on its metabolites, as the
culture supernatant of L. reuteri BM36301 could reduce TNF
production from human myeloid THP-1 cells (Lee et al., 2016).
Interestingly, tryptophan catabolites of L. reuteri have been
recognized as ligands for aryl hydrocarbon receptor (AhR).
Through activating AhR, L. reuteri can promote local IL-22
production from innate lymphoid cells (ILCs) (Zelante et al.,
2013). In addition, the derivatives of tryptophan generated
by L. reuteri can induce the development of regulatory
CD4+CD8αα+ double-positive intraepithelial lymphocytes in
an AhR-dependent manner (Cervantes-Barragan et al., 2017).
Considering that AhR is ubiquitously expressed, L. reuteri and
its metabolites may be able to influence many more types
of immune cells beyond ILCs and T cells (Nguyen et al.,
2013).

Neuromodulatory Capability of L. reuteri
The intestinal microbiota plays a role in the functions of the
enteric nervous system (ENS) (Yoo and Mazmanian, 2017).
Subjects with microbiota depletion exhibit an abnormal ENS state
(Anitha et al., 2012; Brun et al., 2013, 2015; Yoo and Mazmanian,
2017). Antibiotic treatment reduces the number of neurons in the
ENS. This may be related to the decrease in Glial cell line-derived
neurotrophic factor (GDNF), which can be restored by TLR2
stimulation (Brun et al., 2013). Moreover, germ-free animals
show defective ENS morphology and excitability, which can
be reversed by microbiota colonization (McVey Neufeld et al.,
2013; Collins et al., 2014). L. reuteri, specifically, can prevent
visceral pain response mainly by reducing the enteric nerve
activity during the colorectal distension pressure in mice (Kamiya
et al., 2006; Ma et al., 2009). Interestingly, live, heat-killed,
gamma-irradiated L. reuteri, or even the conditioned media
all had a similar effect (Kamiya et al., 2006). L. reuteri can
also produce gamma-aminobutyric acid (GABA), the major
inhibitory neurotransmitter in the central nervous system
(Su et al., 2011; Barrett et al., 2012; Pallin et al., 2016). However,
the in vivo bioactivity of the produced GABA has not been
addressed (Yoo and Mazmanian, 2017). Furthermore, L. reuteri
can increase the excitability and the number of action potentials
in rat colonic sensory neurons (Kunze et al., 2009). These distinct
effects of L. reuteri may be due to the difference in target neurons
(Lai et al., 2017).

Role of L. reuteri in Reversing the Leaky
Gut
Physical, biochemical, and immunological barriers comprise
the gut barrier function, which is required to block the entry
of exterior antigens and toxins (Mu et al., 2017a). If any
abnormalities occur in the intestinal barrier, the permeability
may increase resulting in a leaky gut. Various probiotics are
known for their abilities to enhance mucosal barrier function,
of which L. reuteri is a well-known example (Mu et al., 2017a).
In DSS-induced colitis, L. reuteri administration could reduce
bacterial translocation from the GI tract to the mesenteric lymph
nodes (MLN) (Dicksved et al., 2012). In addition, treatment
of lupus-prone mice with a mixture of Lactobacillus species
including L. reuteri led to a higher expression of tight junction
(TJ) proteins in intestinal epithelial cells (Mu et al., 2017c).
Subsequently, the translocation of pro-inflammatory molecules
such as LPS was significantly suppressed, which correlated with
attenuated disease. In addition to mouse studies, several strains
of L. reuteri have been shown to possess the ability to modulate
TJ protein expression and maintain intestinal barrier integrity
in pigs (Yang F. et al., 2015; Wang Z. et al., 2016). Moreover,
the ability of L. reuteri to decrease intestinal permeability has
been seen in humans. In children with atopic dermatitis, where
the impairment of intestinal barrier function has been positively
correlated with disease pathogenesis (De Benedetto et al., 2011),
treatment with L. reuteri DSM 12246 (and L. rhamnosus 19070-2)
significantly reduced the frequency of GI symptoms while
decreasing the lactulose to mannitol ratio (Rosenfeldt et al.,
2004), which reflects the reversal of a leaky gut (Camilleri et al.,
2010).

L. reuteri ATTENUATE HUMAN
DISEASES

A growing body of evidences links microbiota and bacterial
translocation with multiple diseases, including several
autoimmune disorders (Mu et al., 2015, 2017a). Due to its
strong modulatory effects on host microbiota and immune
responses with almost no safety concerns, L. reuteri is a good
candidate for disease prevention and/or treatment. Indeed, the
therapeutic potential of various L. reuteri strains has been studied
in diverse diseases and the results are promising in many cases.
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TABLE 3 | Effects of L. reuteri on early-life diseases.

Target Strain Duration Subjects Result Citation

Early caries lesions DSM 17938, ATCC
PTA 5289

3 months Adolescent No significant change in fluorescence
or lesion area

Keller et al., 2014

Caries ATCC 55730 First year life Infants Reduced prevalence of caries and
gingivitis score when the kids were
9 years old

Stensson et al.,
2014

FAP DSM 17938 4 weeks FAP children Significant decrease in the frequency
and intensity of functional abdominal
pain

Weizman et al.,
2016

FAP DSM 17938 4 weeks FAP children Significant reduction of pain intensity Romano et al.,
2014

Infectious diarrhea DSM 17938 5 days Children Safe and well-tolerated; decreased
duration of diarrhea

Dinleyici et al., 2015

Rotavirus diarrhea - Up to 5 days Young children Shortened diarrhea duration and large
decrease in the occurrence of watery
diarrhea

Shornikova et al.,
1997a,b

Nosocomial diarrhea DSM 17938 During hospital stay Children No effect on the overall incidence of
diarrhea, including that related to
rotavirus infection

Wanke and
Szajewska, 2012

Acute diarrhea DSM 12246 (with
19070-2)

5 days Children patients Decreased duration of diarrhea;
decreased period of rotavirus
excretion

Rosenfeldt et al.,
2002a,b

Acute diarrhea DSM 17938 3 days Children Decrease in diarrhea frequency,
duration, and relapse

Francavilla et al.,
2012

Acute diarrhea DSM 17938 5 days Hospitalized
children

Effective decrease of the duration of
acute diarrhea

Dinleyici et al., 2014

Diarrhea ATCC 55730 12 weeks Infants Fewer and shorter diarrhea episodes Weizman et al.,
2005

Diarrhea DSM 17938 6 months Children Reduced incidence of diarrhea Agustina et al.,
2012

Diarrhea DSM 17938 3 months Children Decrease in diarrhea episodes and
duration; Benefits against respiratory
infection

Gutierrez-Castrellon
et al., 2014

Infant colic DSM 17938 3 weeks Breastfed infants Significant reduction in crying time Mi et al., 2015

Infant colic DSM 17938 3 weeks Breastfed infants Reduction in crying and fussing time Chau et al., 2015

Infant colic DSM 17938 12 weeks Newborns Effective preventive and protective
action

Savino et al., 2015a

Infant colic ATCC 55730 28 days Breastfed infants Significantly improvement of colicky
symptoms compared with
simethicone

Savino et al., 2007

Infant colic DSM 17938 21 days Breastfed infants Improved symptoms; Increase of
Lactobacilli increase and decrease of
E. coli in the fecal microbiota

Savino et al., 2010

Infant colic DSM 17938 21 days Colicky infants No effect on the global microbiota
composition

Roos et al., 2013

Infant colic DSM 17938 21 days Breastfed infants Higher rate of responders and
reduced median crying time

Szajewska et al.,
2013

Infant colic DSM 17938 1 month Infants No effect on crying time Sung et al., 2014

Infant colic DSM 17938 90 days Infants Significant reduction of the mean
crying time

Indrio et al., 2014

Infant growth DSM 17938 98 days Healthy infants Well-tolerated but no improvement on
growth

Cekola et al., 2015

Atopic dermatitis DSM 122460 (with
19070-2)

6 weeks AD children Improvement of eczema; more
pronounced in allergic patients

Rosenfeldt et al.,
2003, 2004

Atopic dermatitis ATCC 55730 8 weeks AD children Positive modulation of cytokine
pattern in the exhaled breath
condensate

Miniello et al., 2010

Eczema ATCC 55730 −1 to 12 month old Infants with family
Allergic history

No protection of the general
occurrence of eczema; Prevention of
IgE-associated eczema

Abrahamsson
et al., 2007

(Continued)
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TABLE 3 | Continued

Target Strain Duration Subjects Result Citation

GI motility - 30 days Newborns Faster gastric emptying Indrio et al., 2009

Respiratory allergy ATCC 55730 −1 to 12 month old Infants No effect on the prevalence of asthma,
eczema or other allergic diseases later
in life

Abrahamsson
et al., 2013

Feeding intolerance DSM 17938 Until out of NICU Preterm infants Decrease in feeding intolerance and
duration of hospitalization

Rojas et al., 2012

Necrotising enterocolitis DSM 17938 Until discharge Preterm infants No effect on NEC rate; Decrease in
feeding intolerance and duration of
hospital stay

Oncel et al., 2014

Regurgitation DSM 17938 28 days Infants Prevention of regurgitation during the
first month of life

Garofoli et al., 2014

Regurgitation DSM 17938 90 days Infants Significant reduction of the mean
number of regurgitation

Indrio et al., 2014

FAP, functional abdominal pain; NICU, neonatal intensive care unit; NEC, necrotising enterocolitis.

Early-Life Disorders
Taking advantage of the safety and tolerance of L. reuteri in
infants and young children, a lot of efforts have been made to test
the potential application of L. reuteri against disorders early in
life (Table 3). In general, the results are promising. L. reuteri has
been demonstrated beneficial in the prevention and/or treatment
of many conditions including diarrhea, functional abdominal
pain, caries, atopic dermatitis, allergy, feeding intolerance, and
regurgitation. Infant colic, for example, has been the major
therapeutic target of L. reuteri (Table 3). Infant colic is
characterized by immoderate crying and affects 10–30% infants
(Mi et al., 2015). The exact cause and efficient treatment of
this condition have remained elusive. The clinical efficacy of
L. reuteri DSM 17938 has been demonstrated as most of the
clinical trials were successful (Table 3). The failure of some
studies may be explained by the differences in the dosage of
L. reuteri, the infant age when the studies initiated, or the baseline
microbiota structure. It is worth mentioning that L. reuteri is
naturally contained in human breast milk (Soto et al., 2014),
though inconsistencies exist among individuals. The presence
of L. reuteri in milk may complicate the results of studies that
involved breastfeeding. When given during pregnancy, L. reuteri
did not show a significant effect on allergy and eczema in infants
after they were born (Table 3).

Systemic Lupus Erythematosus
The SLE is a multi-system autoimmune disease that involves both
genetics and environment as the major disease causative factors
(Tsokos, 2011; Edwards et al., 2017). The role of gut microbiota
in SLE development was suggested by recent studies, and
probiotics have been proposed as potential immunoregulators in
SLE (Mu et al., 2015, 2017b; de Oliveira et al., 2017; Edwards
et al., 2017; Esmaeili et al., 2017). We reported a significantly
decreased level of Lactobacillaceae in lupus-prone MRL/lpr
female mice compared to healthy control mice both before and
after the disease initiated in MRL/lpr mice (Zhang et al., 2014).
Moreover, we found that treatment with retinoic acid improved
kidney disease in MRL/lpr mice, and that the improvement of
lupus symptoms was associated with restoration of Lactobacilli.
This suggests a possible beneficial effect of Lactobacilli in lupus.

Therefore, we treated MRL/lpr mice with a mixture of five
strains of Lactobacilli to determine their therapeutic benefit.
As anticipated, increasing Lactobacilli in the gut improved
renal function, reduced serum autoantibodies, and prolonged
the survival of MRL/lpr mice (Mu et al., 2017c). Interestingly,
L. reuteri and an uncultured Lactobacillus sp. accounted for
> 99% of the observed effects. It suggests a central role
of L. reuteri in attenuating lupus nephritis. Furthermore, we
found that MRL/lpr mice had a “leaky” gut during disease
progression, whereas Lactobacillus treatment enhanced the
intestinal barrier function in these mice and subsequently
decreased metabolic endotoxemia (Mu et al., 2017c). At the
same time, the local and systemic pro- and anti-inflammatory
network was rebalanced by Lactobacillus treatment. Specifically,
IL-10 production was enhanced while the level of IL-6 was
decreased systemically. Strikingly, the benefits of Lactobacilli
were only observed in females and castrated males but not in
intact males. Coincidently, the relative abundance of Lactobacilli
in gut microbiota did not decrease as disease progressed in
male MRL/lpr mice (Zhang et al., 2014). Consistent with
our observations, daily consumption of L. reuteri BM36301
significantly lowered serum TNF level in females but not in
males (Lee et al., 2016). The high serum level of testosterone
in males may have led to the difference in the response to
L. reuteri. Together, these results suggest possible interaction
between sex hormones and gut microbiota in autoimmune
disease development (Markle et al., 2013; Yurkovetskiy et al.,
2013). Further investigation of this link is required. In another
lupus mouse model, NZB/W F1, the administration of two
L. reuteri strains, together with one L. paracasei strain, was shown
to be effective in ameliorating lupus hepatitis (Hsu et al., 2017).
Liver abnormalities, manifested as increased liver enzymes, portal
inflammation and histopathological changes, have been observed
in both lupus mouse models and SLE patients (Hsu et al.,
2008; Grover et al., 2014). In this study, the oral L. reuteri
treatment largely mitigated hepatic apoptosis and inflammation,
suggesting a protective function of L. reuteri against lupus-
associated liver disease (Hsu et al., 2017). The protection seems
to rely on the capability of L. reuteri to increase antioxidant
activity and reduce cytokines associated with more severe lupus,
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such as IL-6 and TNF (Tzang et al., 2017). Interestingly, within
these two L. reuteri strains, only GMNL-263 can significantly
promote the differentiation of Treg cells, again emphasizing
the uneven immunoregulatory abilities of different L. reuteri
strains.

Obesity
The correlation between gut microbiota and obesity is well
documented (Okeke et al., 2014; Harakeh et al., 2016).
The microbiota composition varies between lean and obese
individuals, and a surprisingly high level of Lactobacillus spp.
has been found in the microbiota of both obese adults and obese
children (Armougom et al., 2009; Bervoets et al., 2013). Among
different Lactobacillus spp., L. reuteri was specifically described
to be associated with obesity (Million et al., 2012, 2013a). The
association was further established when vancomycin-resistant
L. reuteri in gut microbiota was determined as a body weight gain
predictor during vancomycin treatment (Million et al., 2013b).
However, in a randomized, double-blind and placebo-controlled
clinical trial, the administration of L. reuteri JBD301 for 12 weeks
significantly reduced body weight in overweight adults (Chung
et al., 2016). Moreover, supplementation of infant formula with
L. reuteri did not increase weight gain in infants (Braegger
et al., 2011; Koleva et al., 2015). These conflicting results indicate
that L. reuteri may influence the development of obesity in a
strain-dependent manner. This hypothesis is partially verified
in an animal study. In that study, three different strains of
L. reuteri were used to test their influence on diet-induced
obesity (Fåk and Bäckhed, 2012). It was demonstrated that
only L. reuteri PTA 4659 efficiently reduced the body weight
of mice fed with high-fat diet (HFD), whereas L. reuteri
L6798-treated mice even gained some weight. The changes of
adipose and liver weights were consistent with the body weight
change.

In animal studies, several strains of L. reuteri have been
reported to negatively regulate the development of obesity
(Dahiya et al., 2017). In addition to the beneficial effect of
L. reuteri JBD301 to human obese patients mentioned earlier,
the favorable role of this strain of L. reuteri against weight
gain was confirmed in HFD-fed mice (Chung et al., 2016).
In HFD-induced obese mouse models, the beneficial role of
L. reuteri GMNL-263 was also noted (Hsieh et al., 2016).
Treatment with L. reuteri GMNL-263 reduced the body weight
as well as the percentages of adipose tissue and liver to body
weight. Interestingly, heat-killed GMNL-263 appeared to have a
very similar beneficial function (Hsieh et al., 2016; Liao et al.,
2016). L. reuteri 6475 has also been shown to be beneficial
against obesity in mice (Poutahidis et al., 2013b). The function
of L. reuteri 6475 was suggested to be largely dependent on its
capability to induce Treg cells without changing the gut microbial
ecology. Furthermore, the weight loss properties of some reagents
have been attributed to their abilities to increase L. reuteri in
mice. Polymannuronic acid, for example, was able to increase
the relative abundance of L. reuteri and significantly reduce
HFD-induced body weight gain (Liu F. et al., 2017). Whether the
increase of L. reuteri is the cause of weight loss requires further
investigation.

Neurodevelopmental Disorder
Exposure to maternal obesity in utero increases the chance
of neurodevelopmental disorders, such as autism spectrum
disorder, in children (Connolly et al., 2016). In a recent mouse
study, maternal HFD (MHFD) was shown to induce social
deficits in the offspring (Buffington et al., 2016). The impaired
social ability in GF mice was restored by fecal microbiota
transplantation from offspring with maternal regular diet (MRD)
but not MHFD, suggesting a potential role of microbiota in
this process. Further analysis showed that the abundance of
L. reuteri was reduced more than ninefold in the gut microbiome
of MHFD vs. MRD offspring. The social defects in MHFD
offspring were rescued by direct L. reuteri administration,
suggesting an effect of L. reuteri in regulating neurodevelopment
in MHFD mice. This regulatory function of L. reuteri was
attributed to its capability to increase the level of oxytocin
(Poutahidis et al., 2013a; Buffington et al., 2016). The results
of these studies suggest a potential application of L. reuteri in
the treatment of patients who suffer from neurodevelopmental
disorders.

Stressor Exposure and Enteric Infection
The composition of gut microbiota shift when the host is
exposed to stressors (Bailey et al., 2010; Galley et al., 2014).
In C57BL/6 males, social stressors led to an altered intestinal
microbiota composition, though there was no significant
change in community diversity (Galley et al., 2014). Further
analysis showed stressor-induced reductions in the families
Porphyromonadaceae and Lactobacillaceae, especially in the
genus Lactobacillus. Among Lactobacillus spp., L. reuteri was
specifically measured and a lower abundance of L. reuteri
was evident in stressor-exposed CD-1 mice but not C57BL/6
mice. In fact, the level of L. reuteri in C57BL/6 male
mice was below the detection limit with or without stressor
exposure (Galley et al., 2014). It is important to note
that stressor exposure increased the severity of Citrobacter
rodentium-induced inflammation in the gut (Bailey et al., 2010;
Mackos et al., 2016). The colonization of C. rodentium was
promoted by stressor exposure, which subsequently resulted
in more severe colonic pathology and increased production of
inflammatory cytokines and chemokines (Mackos et al., 2016).
Further studies revealed that stressor-induced C. rodentium
colitis was C-C motif chemokine ligand 2 (CCL2)-dependent.
Interestingly, administration of L. reuteri ATCC 23272 was
able to reverse stressor-induced C. rodentium infection, which
also relied on CCL2 (Mackos et al., 2013, 2016). However,
L. reuteri was not able to restore the gut microbiome
altered by social stressors. This indicates that the beneficial
effect of L. reuteri on stressor exposure and subsequent
enteric infection is not microbiota-dependent (Galley et al.,
2017).

CONCLUSION

There has been a decrease in the abundance of L. reuteri in
humans in the past few decades likely caused by the modern
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lifestyle (Antibiotic use, western diet, improved hygiene). Such
decrease coincides with higher incidences of inflammatory
diseases over the same period of time. While evidence is lacking
to establish the correlation, it may be helpful to increase L. reuteri
colonization and/or facilitate its probiotic functions as a new and
relatively safe strategy against inflammatory diseases. In addition,
through direct regulation or indirect modulation via the host
microbiota, L. reuteri plays an impressive role in eliminating
infections and attenuating both GI diseases and diseases in
remote tissues. The safety and tolerance of L. reuteri has been
proven by the numerous clinical studies. There are multiple
L. reuteri strains with different host origins, and many of the
probiotic functions of L. reuteri are strain-dependent. Therefore,

it may be advantageous to combine different strains of L. reuteri
to maximize their beneficial effects.
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