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Key Points 

• ECMO is associated with physiologic and biomechanical changes that can impact drug 

disposition 

• There is typically limited data describing changes in drug pharmacokinetic parameters for 

patients treated with ECMO. 

• Changes in pharmacokinetics are often drug-specific  

• Extrapolation of ECMO data from neonatal literature is limited due to significant differences in 

body composition and elimination pathways 

• Therapeutic drug monitoring, when possible, should be considered to individualize therapeutics 

in patients receiving ECMO therapy 

Synopsis  

The need for ECMO therapy is a marker of disease severity, for which multiple medications are 

required. The therapy causes physiological changes which impact drug pharmacokinetics. These 

changes can lead to exposure driven decreases in efficacy or increased incidence of side effects. 



The pharmacokinetic changes are drug specific and largely undefined for most drugs. We 

review available drug dosing data and provide guidance for use in the ECMO patient 

population.  

 

  



Introduction 

Critically ill patients have alterations in the pharmacokinetic (PK) parameters which describe 

drug absorption, distribution, metabolism, and excretion. These disturbances arise from the acute 

response of critical illness, including systemic inflammatory responses, organ dysfunction, altered tissue 

permeability, pH disturbances, changes in intra or extravascular space, fluid shifts, or decreased protein 

concentration. These pharmacokinetic alterations are relevant as they may precipitate unexpected 

medication toxicities or impair efficacy. In order to optimize patient outcomes, PK changes should be as 

best possible identified when developing medication regimens for critically ill patients. 1-4 

ECMO and Pharmacokinetics  

Mechanical ventilation, renal replacement therapy, and extracorporeal membrane oxygenation 

(ECMO) 5-8 can impact drug disposition and complicate the management of critically ill patients. During 

ECMO therapy, a large volume of blood is extracted from the venous system and is circulated outside 

the body into an oxygenator. A typical ECMO circuit consists of polyvinyl chloride (PVC) tubing, a hollow 

fiber (polymethylpentene) oxygenator, and a heat exchanger 9 (Figure 1 ). PK changes during critical 

illness are often more pronounced in the presence of ECMO. Several aspects such as the sequestration 

of medications in the ECMO circuit, increased volume of distribution, and alterations in organ perfusion 

may alter PK parameters in ECMO patients.5,7,9-12  (TABLE 1) 

The effect of ECMO therapy on pharmacokinetics varies and is not fully elucidated for the 

majority of drugs.  Investigating the impact of the ECMO circuit and its resulting physiologic changes on 

pharmacokinetics and pharmacodynamics is difficult given the limited patient population upon which to 

generate data. The ECMO population is numbered because ECMO is often a salvage therapy offered by 

limited number of centers. The available data investigating ECMO therapy is not only limited in size, but 

is typically also observational since it is difficult to conduct randomized trials with a control group. While 

there is some literature available in neonatal populations, it is difficult to generalize this data to adult 

populations. ECMO technology is frequently evolving, and circuits’ manufacturers and materials vary, 

further limiting data generalizability. Demands of clinical care and blood volume during critical illness 

make sparse PK sampling with population modeling methods the only feasible method to investigate 

drug pharmacokinetic parameters in these patients. While this approach can identify some covariates 

associated with differential drug disposition, it is not possible to generate precise PK parameters under a 

variety of clinical scenarios.  

    Drug Sequestration  



Drug sequestration to the circuit is a common consequence of ECMO therapy. The loss of 

medication in the circuit depends on factors including surface area or the potential interaction of 

medications to various plastic components of the ECMO system.5  The type of circuit may also be a 

variable predictor influencing the level of drug sequestration.9,13,14  The presence and material of ECMO 

oxygenators may further result in drug recovery differences.15,16  The use of blood versus crystalloid 

priming agents may increase drug losses with specific medications such as fosphenytoin, fentanyl, and 

heparin.9,11,17 The overall effect of priming ECMO circuits with crystalloids, colloids, or blood products on 

drug sequestration is poorly characterized. While saline is a commonly utilized priming agent for ECMO 

circuits, there is currently no standard recommendation or guidance surrounding the most optimal 

priming approach. Molecular drug properties such as lipophilicity, molecular size, ionization, and 

protein-binding characteristically influence the likelihood of drug sequestration in the ECMO circuit. 

Typically, lipophilic and highly protein-bound medications are significantly sequestered in the circuit. 9,18 

PK parameters of hydrophilic medications are also affected secondary to hemodilution and other ECMO-

related pathophysiologic changes. Previous studies investigating the overall impact of drug 

sequestration have reported up to 50% of morphine and 40% of lorazepam sequestration at 24 hours 

with additional medication losses in older circuits.17 Most importantly, the sequestration phenomenon is 

unpredictable. While medications may be sequestered, the circuit may also continue to release the 

sequestrated product over time. Overall, the sequestration of medications in the ECMO circuit increases 

the volume of distribution (Vd) which ultimately causes lower or suboptimal drug concentrations in the 

body (Figure 2)  

     Volume of Distribution 

Volume of distribution (Vd) is the hypothetical body space available for the medication to be 

diluted and distributed. Conceptually, Vd can be thought of as the relative fraction of drug that resides 

within the blood volume compared to that sequestered in extravascular compartments. Volume status 

and medication volume of distribution are highly relevant when predicting effective medication dosages 

for patients.  Drug concentrations are measured in the central compartment and in variable fashion is a 

proxy for drug concentration at target, and thus drug effect. The therapeutic impact of an altered Vd is 

highest with medications with small volumes of distribution. For example, gentamicin is an 

aminoglycoside with a relatively small Vd of 0.2-0.3 L/kg in healthy adults, or 18L in an average 70kg 

patient. A typical initial 2mg/kg dose in this patient would lead to approximate therapeutic 

concentrations of 140mg/18L, or 8mg/L. The target peak concentration of conventionally dosed 

gentamicin in severe gram negative infections is 8-10 mg/L. Even slight changes in Vd may have a drastic 

impact on plasma concentrations. For example, the final concentration would be subtherapeutic at 



5mg/L if the Vd were increased to 0.4 L/kg (28L) or supratherapeutic at 20mg/L if the Vd were decreased 

to 0.1 L/kg (7L). In contrast, medications with large volumes of distribution have the ability to diffuse 

from tissue reservoirs back into the circulating plasma. Unlike distribution to extravascular tissue, drug 

sequestered in tubing will not redistribute into the system when tubing is replaced. Other mechanisms 

by which ECMO has been found to increase Vd includes changes in plasma proteins from hemodilution 

or transfusions, organ dysfunction, pH alterations, and the activation of the systematic inflammatory 

response system. Most pharmacokinetic data in ECMO patients has originated from neonatal 

populations and in comparison to adults, neonates have a higher proportion of total body water, 

resulting in a higher Vd for hydrophilic medications. Additionally, neonates have decreased plasma 

protein binding, trapping less drug in the central compartment and resulting in a higher Vd for protein-

bound medications. These differences between adult and neonatal populations limit the applicability of 

available ECMO PK data across the continuum of ages.5,11,19,20   

Metabolism and excretion play significant roles in determining optimal medication dosages. A 

challenge often seen in ECMO patients involves changes in the rates of blood flow, which may alter 

tissue and organ perfusion.5  Kidney and liver hypoperfusion can impair medication metabolism and 

clearance leading to accumulation and potentially toxicity.  Renal dysfunction (serum creatinine 

>1.5mg/dL), a common  occurrence during EMCO, has been reported to be as high as 32% in VV ECMO 

and 47% in VA ECMO.21 While VV ECMO utilizes pulsatile blood flow, VA ECMO incorporates higher flow 

rates with non-pulsatile blood flow.  The mode disrupts typical blood flow since the kidneys interpret it 

as hypotension, causing a downstream activation of the renin-angiotensin system (RASS) ultimately 

leading to reduced urine production, an increased circulating volume, and thus an increased Vd.5,19 

Much of the available PK data on ECMO have been reported in neonatal populations, who typically have 

immature enzymatic pathways and glomerular function. The impact of blood flow rates and 

hypoperfusion are yet to be described in the adult populations. Although the impact of renal 

hypoperfusion may be countered with the use of renal replacement therapy (RRT), the PK of ECMO 

patients on RRT is complex and variable. Therapeutic drug monitoring, whenever possible, is essential in 

this patient population.  Additional research in this subset of patients is necessary to further guide 

treatment goals.    

 Sedation, analgesia, anticoagulation, treatment of infection, and diuresis are commonly 

encountered and are areas of concern in ECMO patients. Many medications from these classes have 

highly variable PK parameters which are unpredictable and patient dependent. While some medication 

classes such vasopressors and other cardioactive drugs can be titrated to patient response, others such 

as sedatives, have non-standardized endpoint measures. Others have no readily available biomarkers to 



follow, requiring in all cases the application of PK principles to achieve optimal therapeutic response.22,23  

Sedatives/Analgesics-Opioids 

Sedatives and analgesics are utilized extensively in the ECMO population. Optimal sedation regimens are 

poorly defined due to inter-patient pharmacokinetic variability. The optimal sedative and analgesic 

agent depends on multiple PK considerations and patient-specific variables.24-26  In addition, there is a 

lack of a well-accepted pharmacodynamic (PD) endpoints to allow characterization of 

exposure/response relationships. Clinically, subjective agitation and ventilator dysynchrony are common 

measures of adequacy of sedation. Opioids are commonly used in the ICU as they provide both analgesia 

and sedation. The intravenous (IV) route of administration bypasses concerns for erratic absorption and 

also allows for faster onset and rapid titratability.27,28  While all full mu-agonist opioids can achieve equal 

levels of analgesia, each agent’s potency and physiochemical characteristics serve as differentiating 

factors. 

     Fentanyl 

Fentanyl, a lipophilic synthetic mu-opioid agonist with rapid onset and a short half-life, has been 

found to bind to the ECMO circuit extensively after 24 hours.5,29  The level of fentanyl membrane 

absorption has been found to be variable dependent on the type of membrane oxygenator.13  Thus, 

fentanyl may be suitable for short-term analgesia however higher doses may be necessary to provide 

adequate sedation and analgesia, dependent on the type of membrane oxygenator beyond 24 hours.5,28  

In contrast, the concentrations of morphine, a full mu-opioid agonist, are maintained despite ECMO 

therapy. Its minimal absorption to the ECMO circuit is likely due to morphine’s hydrophilic nature. 

However, the clearance of morphine decreases up to 50% potentially due to hepatic hypoperfusion.5,29,30  

The accumulation of morphine’s active metabolite, especially in renal failure, may lead to prolonged 

sedation. Furthermore, morphine’s histamine release may contribute to bronchospasm and 

hypotension.28 Clinicians should be aware of this dynamic accumulation, to allow down titration to 

clinical effect.17,29   

    Hydromorphone 

Hydromorphone, a semisynthetic opiate, is an additional option for analgesia and sedation. 

Although there are no studies investigating its PK in ECMO, hydromorphone is expected to have minimal 

sequestration within the EMCO circuit due to its hydrophilicity. Unlike morphine, this agent does not 

have active metabolites and does not cause a histamine release when administered. Although 

meperidine is a full mu-opioid agonist, it should be avoided due to its potential for drug interactions 



with serotonergic and dopaminergic agents and metabolite accumulation leading to decreased seizure 

thresholds. 28 

Ketamine 

 Adjunctive analgesic medications such as ketamine, an N-methyl-D-aspartate antagonist, are 

demonstrated to augment opioid analgesia without influencing sympathetic tone. 28,31 In addition to 

improved wakefulness due to decreased opioid utilization, low-dose ketamine infusions may also offer 

the advantage of producing amnestic effects. Ketamine has previously demonstrated the ability to 

decrease opioid or concurrent sedative requirements without altering RASS scores at doses ranging 

from 50-100mg/hr. These high doses may be a result of drug sequestration due to ketamine’s lipophilic 

nature.32 However, a randomized controlled trial of 20 ECMO patients showed no reduction in opioid or 

sedative requirements in patients with a low-dose ketamine infusion compared to a control group.33 

Given the paucity and conflicting nature of available data and dosing practices, the optimal use of 

ketamine in ECMO patients has not yet been defined.  

Benzodiazepines 

While opioids alone may provide sufficient analgesia and sedation, some patients may require 

additional sedation to provide adequate comfort. Benzodiazepines activate gamma-aminobutyric acid 

receptors leading to anxiolysis, amnesia, and sedation. Midazolam, a benzodiazepine, is frequently 

utilized as an infusion given its rapid onset of action, relatively short half-life (2-5 hours), and 

intermediate duration.  Despite being water soluble, midazolam is also highly lipophilic and has been 

shown to have significant sequestration in the ECMO circuit. Literature suggests that greater than 50% 

of midazolam may be sequestered with a majority in the first few hours of ECMO initiation. Significantly 

higher doses of midazolam are necessary with the introduction of ECMO due to this sequestration as 

well as the increased Vd.34  While higher doses may be necessary, accumulation of its active metabolite 

or liver and renal failure prolong the effect of midazolam, leading to excessive sedation and respiratory 

depression.28 This also may contribute to longer recovery times. Lorazepam is less lipophilic than 

midazolam leading to a lesser degree of ECMO circuit sequestration.17 Compared to midazolam, 

lorazepam has a longer half-life of 10-20 hours and does not have any active metabolites. However, 

caution is warranted, especially in using high doses and for prolonged periods due to the polyethylene 

glycol excipient that can cause potential renal toxicity. 

Propofol and Dexmedetomidine 

Non-benzodiazepine sedatives may also be used in conjunction with opioids to provide 



additional sedation. Propofol, a lipophilic and highly protein-bound agent, has been found to have 

significant sequestration within the ECMO circuit.35  This makes, propofol possibility a less desirable 

agent for sedative therapy for ECMO patients.28  Dexmedetomidine, an alpha 2-adrenergic agonist, has 

analgesic, anxiolytic and sedative properties. Patients sedated with dexmedetomidine are easily 

aroused.  Compared to benzodiazepines, dexmedetomidine is associated with a reduced incidence of 

delirium, respiratory depression, and impact on sympathetic tone.27,36  If the patient requires deep 

sedation due to neuromuscular blockade, dexmedetomidine is not appropriate in monotherapy.  

Dexmedetomidine sequestration appear to occur early in the circuit and continue to decline throughout 

ECMO treatment. Despite these losses, the clearance of dexmedetomidine between old and new circuits 

has not been found to be statistically significant. Thus, dexmedetomidine may experience medication 

losses in ECMO circuits, either through sequestration or clearance. Dexmedetomidine therapy in ECMO 

patients requires monitoring and appropriate dose adjustments to ensure adequate serum 

concentrations.37  

The approach to analgesia and sedation for ECMO patients should be patient specific.  Choice of 

drug depends on level of sedation required due to the presence of neuromuscular blocking agents or 

instrumentation, patient characteristics such as previous drug exposure or tolerance, expected duration 

of therapy, and allergies.  Institutional formulary restrictions, drug cost, shortages and local guidelines 

also help to guide therapy.   

Neuromuscular blockade:  

Neuromuscular blocking agents (NMBAs) may be utilized in ECMO patients in conjunction with 

sedatives to provide pharmacological skeletal muscle paralysis. These agents should be reserved for 

select situations in which paralysis is necessary to improve patient-ventilator synchrony, enhance alveoli 

recruitment and oxygenation, and reduce overall oxygen demand.38,39 Clinical practice patterns of 

pharmacological paralysis in ECMO patients is variable.24,25 Currently, there are no pharmacokinetic data 

available to tailor NMBA dosing for ECMO patients. Standard dosing and appropriate titration are 

recommended.  Peripheral nerve stimulation testing such as train of four (TOF) monitoring is vital for 

paralytic assessment and NMBA titration.40 Patients receiving neuromuscular blockade must be also 

monitored for symptoms of ICU-acquired weakness, myopathy, and polyneuropathy.41  

Anticoagulation:  

As blood is exposed to non-biological surfaces and high shear stress, platelet activation and the 

coagulation cascade is triggered, putting patients at risk for clotting during ECMO.42-44 Additional factors 



provoking hypercoagulability during ECMO therapy include cannulation induced endothelial injury and 

blood flow disturbances. 45 Even in settings of a variety of different pumps, membrane oxygenators, 

heat exchangers, and priming volumes, the overall impact on hemostasis is largely consistent.42,46 

Methods such as coating non-endothelial surfaces with anticoagulants and systemic anticoagulation 

have been investigated to minimize the risk of thrombosis. Unfractionated heparin (UFH) is a standard 

and widely used anticoagulant. There is no standard dose of heparin currently recommended. Although 

sites may have institution-specific protocols for infusing UFH during ECMO, one method is to administer 

a heparin bolus of 70 units/kg at the time of vascular cannula insertion followed by a continuous 

infusion initiated at 18 units/kg/h titrated to a goal activated partial thromboplastin time (aPTT) of 50-60 

seconds.42 Therapeutic targets vary according to institution. An international survey investigating 

current practices of anticoagulation in ECMO patients has found that activated clotting time (ACT), 

antithrombin III, anti-factor Xa, and thromboelastography may be alternatives for anticoagulation 

monitoring.47 None of these are readily available at most institutions and their use has not been 

established to achieve better clinical outcomes than the use of PTT monitoring. Optimal targets for 

anticoagulation in ECMO patients remain unclear due to the delicate balance between thrombotic and 

hemorrhagic complications.48 Large systematic reviews have noted the rate of thrombosis in VV ECMO 

patients to be 53%. Conversely, rates of gastrointestinal or intracranial hemorrhage in VV ECMO patients 

have been reported to be about 16%.42,48  Thrombotic and hemorrhagic rates have not yet been 

quantified in VA ECMO patients. In attempts to minimize bleeding complications, there have been 

reports of patients with heparin-coated ECMO circuits who have successfully omitted additional 

systemic anticoagulation without increasing thrombotic risk.49,50 Furthermore, heparin-free ECMO may 

be a consideration in select ECMO patients with severe trauma or extensive bleeding risks.51,52 The use 

of UFH as well as specific titration endpoints should be tailored to each patient’s individualized 

thrombotic and hemorrhagic risk factors.  

Although heparin is a suitable anticoagulant for most patients, 10-15% of ECMO patients have 

reported heparin-induced thrombocytopenia (HIT) syndrome.39  Heparin needs to be discontinued in 

this group of patients.53 Direct thrombin inhibitors, such as argatroban and bivalirudin are alternative 

agents for ECMO patients with HIT.39,54-58 The necessity of an initial argatroban bolus is controversial. 

Argatroban may be bolused with a range of 10-30 mcg. Case reports have documented ECMO patients 

to initiate standard doses of argatroban at 2 mcg/kg/min and subsequently titrate to aPTT levels 1.5-3 

times baseline without significant bleeding concerns.23 However, other reports note that typical 

argatroban infusion rates of 2 mcg/kg/min have been associated with excessive anticoagulation and 

severe bleeding in ECMO patients. Comparatively, 10-fold lower dosages of 0.2 mcg/kg/min have been 



demonstrated to achieve appropriate levels of anticoagulation, defined as an aPTT range of 50-60 

seconds.59,60 An additional case report notes that a starting dose of argatroban between 0.1 and 0.2 

mcg/kg/minute resulted in adequate anticoagulation without any thrombotic or hemorrhagic 

complications in a high bleeding risk patient as defined by a dosing weight >90 kg, bihrubin >51.3 

mmol/L, and platelet count < 70 x 109/L.61 Due to the lack of a consensus dosing method, it may be 

recommended to initiate argatroban at lower doses, especially in patients at high risk of bleeding. Non-

ECMO critically ill patients also often have a variable dose response to argatroban, leading some 

clinicians to use regimens of 1 or 0.5 mcg/kg/min as initial therapy. Bivalirudin is not preferred for all 

patients due to its high cost and lack of an antidote. Previous studies have utilized bivalirudin with or 

without a bolus loading dose followed by an infusion ranging from 0.1-0.2 mg/kg/h to 0.5 mg/kg/h. 

Similar to heparin, there is no consensus for bivalirudin monitoring parameters. Reported monitoring 

strategies during bivalirudin therapy have ranged from aPTT 45-60 seconds to 42-88 seconds, ACT 180-

200 seconds to 200-220 seconds, and thromboelastography. 62 

The use of additional antithrombotic agents to minimize platelet activation and deposition in 

ECMO patients should be evaluated on a case to case basis.63 Aspirin, an irreversible cyclooxygenase 

(COX) inhibitor, is often recommended for the prevention of primary or secondary cardiovascular 

events. In ECMO patients, aspirin may also be beneficial to reduce platelet binding to the circuit. 64 

Adjunctive aspirin use in a single prospective cohort study with ECMO patients was not found to 

increase bleeding or transfusion requirements.  65 Indication for aspirin should be individualized in 

patients with coagulation disorders or moderate to severe traumatic brain injury. Clopidogrel, an 

irreversible inhibitor of the P2Y12 component of ADP receptors on platelets, has been evaluated in a 

small subset of patients with acute coronary syndrome receiving ECMO therapy. Although clopidogrel 

therapy may be associated with increased transfusion requirements, it has not been associated with a 

significant bleeding risk. 66,67 Generally, dual antiplatelet therapy in patients with recent coronary stent 

implantation should not be withheld.64,68,69  Glycoprotein IIb/IIIa inhibitors may also be utilized in VA 

ECMO patients with recent percutaneous coronary interventions (PCI). One retrospective observational 

study found that ECMO patients on glycoprotein IIb/IIIa inhibitors required an increased number of 

transfusions.66 The benefit and risk of additional antithrombotic agents should be evaluated on a case to 

case basis.  

Antibiotics 

Antimicrobial regimens that optimize drug exposure relative to therapeutic concentrations 

maximize antimicrobial efficacy and decrease toxicity. More than other drug classes, antibiotic 



concentration is an effective biomarker linked to therapeutic success when extrapolating drug dosing 

between populations. This is the case in ECMO, in which there is a lack of comparative efficacy data to 

guide therapeutics. Although several antibiotics have been analyzed, few trials have been conducted in 

the adult ECMO population. Among the available studies in adult ECMO patients, results have 

demonstrated significant inter-patient variability.14,19,70,71 

Vancomycin 

Vancomycin, a glycopeptide antimicrobial, is a widely used broad-spectrum agent with activity 

against Staphylococcus, Streptococcus, and Enterococcus species. Vancomycin pharmacokinetics may be 

estimated by a ratio of the area under the concentration-time curve (AUC) to the minimum inhibitory 

concentration (MIC). 72 A consensus review from the American Society of Health-System Pharmacists, 

the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists has 

established a vancomycin PK/PD parameter of an AUC/MIC ratio greater than 400 for serious infections. 

It is estimated that targeting vancomycin trough levels of 15-20 mg/L should achieve this AUC for 

organisms with relatively low MICs (MIC <1 mg/L). Suggested vancomycin dosing to achieve these 

trough levels and ultimately AUC/MIC ratios includes a loading dose of 25-30mg/kg based on actual 

body weight followed by a maintenance dose of 15-20mg/kg every 8-12 hours in patients with normal 

renal function. Individual pharmacokinetic adjustments should be made based on therapeutic drug 

monitoring.73  Though the PK parameters of vancomycin have been heavily studied, most trials in ECMO 

patients have only investigated pediatric and neonatal populations. Recent studies with mixed 

populations including neonates, children, and adults suggest an increased Vd and decreased clearance 

of vancomycin during ECMO therapy.20  Despite these changes in PK parameters, adult population 

models derived from smaller trials have found that no special dosing adjustments are required in ECMO 

patients. Pharmacometric modeling has demonstrated that standard dosing regimens may be adequate 

in achieving therapeutic trough concentrations, especially in obese patients on ECMO therapy.74 

Nevertheless, standard vancomycin dosing regimens vary per institution. Some centers have 

investigated 35 mg/kg loading dose over 4 hours followed by a daily infusion adapted to creatinine 

clearance and renal function while others have used an initial 1 gram intravenous dose followed by 1 

gram every 12 hours.75,76 The presence of renal dysfunction and interventions such as continuous renal 

replacement therapy or hemodialysis further complicate vancomycin dosing. Given the mixed data, 

inter-patient variability, and differences among ECMO circuits, therapeutic drug monitoring is essential 

to ensure optimal vancomycin levels. 77 

Carbapenem 

Carbapenems are members of the beta-lactam class of antibiotics and are typically reserved for 



multidrug-resistant bacteria. Beta-lactams, including carbapenems, exert time-dependent killing. These 

time-dependent antibiotics rely on the amount of time that the antibiotic serum concentration remains 

above the organism’s MIC.78  Carbapenems undergo many PK alterations during ECMO, including Vd 

changes and significant sequestration within the EMCO circuit.79  Limited studies are available to 

describe changes in carbapenem PK parameters in ECMO patients. The high variability of imipenem 

trough concentrations has been described in a case report of lung transplant patients on VV ECMO who 

received imipenem 1 gram every six hours. These reports note that utilizing the dosing regimen of 1 

gram every six hours achieved 100% fractional time above the MICs isolated in the patients studied. 

Patients with resistant organisms and high MICs may require higher doses while patients with decreased 

renal function may need dose reductions. 80 The PK of meropenem in ECMO patients has also been 

investigated. Meropenem use in ECMO patients has been associated with an increased Vd yet a lower 

clearance. Meropenem clearance has been found to correlate with creatinine clearance and the 

presence of renal replacement therapy. Ultimately, standard dosing regimens with 1 gram every eight 

hours are expected to yield routine target concentrations. However, increased doses may be necessary 

when targeting less susceptible microorganisms.81  To further address dosing regimens with resistant 

organisms, direct comparisons have been drawn between a VV ECMO patient with Enterobacter 

septicemia receiving meropenem 1 gram every eight hours and a VA ECMO patient with Pseudomonas 

aeruginosa pneumonia (MIC 2 mg/L) and multi-organ failure receiving a high-dose meropenem infusion 

of 6.5 grams every 24 hours. Similar to previous findings, the standard 1 gram every eight hour regimen 

was sufficient for organisms with lower MICs, however, increased dosages such as the high-dose 

infusion were necessary to achieve adequate concentrations for resistant organisms. 12 

Piperacillin/tazobactam  

Many critically ill patients may require treatment with broad-spectrum β-lactams and, similarly 

to carbapenems, the PK parameters of β-lactams during EMCO are not well investigated. 

Piperacillin/tazobactam is a β-lactam/β-lactamase inhibitor antibiotic with time-dependent activity 

commonly used for empiric broad-spectrum therapy. Recent investigations using therapeutic drug 

monitoring of piperacillin/tazobactam concentrations in patients on ECMO therapy demonstrate no 

significant differences in PK parameters between ECMO and non-ECMO patients. Although limited, this 

data suggests that dose-adjustments are not required with piperacillin/tazobactam during ECMO 

therapy.82  

Aminoglycosides  

Aminoglycosides, including gentamicin, tobramycin and amikacin, are broad-spectrum 



antibiotics with concentration-dependent bactericidal activity. Ensuring adequate peak and trough 

levels are essential to optimize antimicrobial killing while minimizing toxicity. 

Gentamicin PK data derived from neonatal ECMO populations suggest a significantly increased 

Vd and half-life as well as a decreased clearance. These PK variations may be a result of gentamicin’s 

hydrophilic profile as well as the decreased renal perfusion seen in neonates, especially during non-

pulsatile ECMO therapy. Recommended dosing regimens in this neonatal population are typically 25% 

lower than typical dosing in non-ECMO neonates.5,9,14,17,83 Although tobramycin has not been separately 

investigated, due to its comparable pharmacokinetic profile to gentamicin, similar dosing 

recommendations may be applied. PK parameters and dosage recommendations for gentamicin and 

tobramycin have not been investigated in adult populations. Given the differences in total body water 

content and renal clearance between neonates and adults, findings in the neonatal population cannot 

be extrapolated to adults. Due to the lack of data in adult populations, standard dosing regimens for 

both gentamicin and tobramycin should be utilized. Given the lack of data in adult patients, close 

therapeutic monitoring of gentamicin peak and trough levels should be performed.  

 In contrast to gentamicin, amikacin has been investigated in adult populations. In a single study, 

ECMO has not been found to significantly impact amikacin peak and trough levels. This data stems from 

adult VA or VV ECMO patients receiving an amikacin 25mg/kg loading dose based on total body weight 

as an infusion over 30 minutes. It is important to note that this loading dose of 25mg/kg was reported to 

result in insufficient peak serum concentrations in 25% of patients. Similar to gentamicin, it can be 

recommended to continue standard amikacin dosing regimens in ECMO patients with therapeutic drug 

monitoring.84,85  

Azithromycin 

Azithromycin, a macrolide antibiotic with a long half-life, has been briefly investigated among 

adult VV ECMO patients with preserved renal function. Patients received standard doses of 500mg 

intravenously every 24 hours. PK parameters, including maximum and minimum concentrations as well 

as the area under the curve, were similar to non-ECMO patients. Furthermore, the assessment of blood 

samples collected at steady state revealed a similar clearance but a decreased Vd as compared to 

healthy volunteers. Collectively, these results suggest that ECMO does not significantly impact the 

pharmacokinetics of azithromycin.86  

 

Linezolid 



Linezolid is a protein synthesis inhibitor which is typically reserved for resistant gram positive 

infections, such as vancomycin-resistant Enterococcus (VRE) and specific cases of methicillin-resistant 

Staphylococcus aureus (MRSA). Due to its high pulmonary penetration, linezolid is a reasonable 

therapeutic option for pneumonia caused by these resistant organisms. Only one report investigating 

linezolid plasma concentrations in patients on ECMO. This report investigated linezolid PK parameters in 

three adult patients being treated for MRSA pneumonia. S. aureus MICs ranged from 1 mg/L to 4 mg/L 

and each patient received standard doses of linezolid 600mg IV every 12 hours. Pharmacokinetic 

analyses demonstrated that standard doses were able to achieve adequate AUC/MIC ratios >80 only 

when the MIC was <1mg/L. 87 Although limited data is available, it is recommended to continue standard 

dosing when the MIC is <1 mg/L. In instances where the MIC is >1 mg/L, previous studies suggest the use 

of prolonged or continuous infusions as well as increased dosages of linezolid.  

Tigecylcline 

Tigecycline, a glycylcycline antibiotic typically reserved for resistant infections, has a very large 

Vd, and is eliminated primarily unchanged in feces and urine. To date, there is only one case report 

investigating tigecycline PK in ECMO patients. Tigecycline treatment has been described in an adult VV 

ECMO patient with a persistent S. epidermidis pulmonary infection in the setting of vancomycin 

resistance. This specific patient received standard tigecycline doses of 50 mg IV twice daily. Though 

measurements of plasma and tracheal aspirate concentrations, it was determined that ECMO does not 

have an impact on tigecycline pharmacokinetics.88  The available data suggest standard tigecycline doses 

may be used in ECMO patients.  

Oseltamivir  

Oseltamivir, an antiviral medication, is indicated for the treatment and prophylaxis of influenza. 

The standard dose of oseltamivir for the treatment of influenza is 75 mg administered nasogastrically or 

nasoenterically every 12 hours. Similar to the absorption of parenteral medications through the ECMO 

circuit, the absorption of enteral medications is also variable. Limited data suggests oseltamivir is 

adequately absorbed when enterally administered during ECMO.89,90 Pharmacokinetic parameters of 

oseltamivir administered nasogastrically or nasoenterically in ECMO patients include decreased 

clearance and increased Vd compared to healthy adult patients. While specific dosage adjustments for 

ECMO are not necessary, oseltamivir should still be adjusted for renal impairment.91 The effects of 

CVVHD in addition to ECMO therapy have also been investigated. Pharmacokinetics of oseltamivir and 

oseltamivir carboxylate in patients concurrently on CVVHD and ECMO revealed no substantial 

differences between pre- and post-ECMO oxygenator plasma concentrations. Although ECMO may not 



extensively contribute to changes in oseltamivir PK, CVVHD significantly affects its clearance.92  Standard 

doses of oseltamivir in patients on CVVHD have been associated with drug accumulation. Thus, 

decreased oseltamivir doses are recommended in patients with renal failure as well as patients requiring 

CVVHD. No specific dosage adjustments are necessary during ECMO therapy.91,93  

 

Ribavirin 

Ribavirin, an anti-viral medication, has been utilized for the treatment of disseminated 

adenovirus in neonates requiring hemofiltration. Doses of 20 mg/kg/day intravenously have 

demonstrated low plasma concentrations at steady state despite negative viral cultures 48 hours post 

ribavirin initiation. 94 Additional studies in the adult population have yet to be conducted. Standard 

dosing recommendations may be employed in adult ECMO patients, caution should be exercised due to 

the lack of data and low plasma concentrations observed in neonates.  

Antifungals:  

Amphotericin B 

Amphotericin B is a polyene antifungal agent which binds to ergosterol in the fungal cell wall 

leading to alterations in cell membrane permeability.  Only one case report of IV amphotericin B use in 

one 15-year-old patient on VA ECMO with respiratory failure secondary to Blastomyces dermatitidis 

pneumonia has been reported. The specific formulation of IV amphotericin B was not specified. The 

patient received 25 mg intravenously over four hours on the first day of therapy followed by two 100 mg 

(1 mg/kg) doses separated by nine hours on day two, and 100 mg over four hours daily (1 mg/kg/day) 

starting day three. Analysis of the patient’s amphotericin B peak and trough levels indicate that ECMO 

did not contribute to Vd changes affecting amphotericin B therapy. Based upon this limited data set, no 

specific dosing adjustments need to be made in ECMO patients. 95,96  

Echinocandins/Azoles 

Fungal infections in intensive care units (ICUs) have risen significantly in the past several 

decades. Broad spectrum antifungal agents such as caspofungin and voriconazole may be used as 

empiric therapy for specific at-risk ICU patient populations. Ex vivo studies in blood-primed ECMO 

circuits have demonstrated significant voriconazole losses up to 71%. 97 Due to this anticipated 

voriconazole sequestration, voriconazole doses in an in vivo study were increased from 280mg (4 mg/kg) 

twice daily to 400mg (6 mg/kg) twice daily. Drug concentration obtained two days following this dose 

increase reflected supratherapeutic levels with troughs >10 mg/mL and peaks of ~ 15 mg/mL. The 



analysis of caspofungin peaks and troughs in these patients suggest that caspofungin is not sequestered 

by the ECMO circuit.98  Comparatively, an additional case report notes a patient to receive standard 

doses of voriconazole (6 mg/kg twice daily on day 1 followed by 4 mg/kg twice daily) and caspofungin 

(70 mg on day 1 followed by 50 mg/day). Blood concentrations collected for both voriconazole and 

caspofungin revealed undetectable circulating levels.96 It is difficult to draw a conclusion based on these 

two reports. Voriconazole has demonstrated significant inter-patient variability even among non-ECMO 

patients.99  Additional studies elucidating the effect of voriconazole PK in ECMO patients are necessary. 

Therapeutic drug monitoring should be conducted in all ECMO patients on voriconazole therapy to 

ensure efficacy and to minimize toxicity. Data suggests that standard-dosed caspofungin may be 

adequate in ECMO patients. In light of limited data, dosing recommendations is provisional for these 

agents.  

Antituberculosis Agents 

A case report of one adult patient on VV ECMO documents subtherapeutic levels of isoniazid, 

rifampin, ethambutol, and pyrazinamide despite standard dosing regimens. In order to achieve target 

plasma concentrations, the patient required conversion from oral to intravenous administration routes 

and doses of 23 mg/kg/d of rifampin (compared to the standard dose of 10 mg/kg/d). Double the 

standard doses of pyrazinamide and ethambutol were also necessary.63  The pharmacokinetic 

parameters of ethambutol and rifampin have also been investigated in patients on ECMO and extended 

daily dialysis. Contrary to the case report previously described, results from the PK analysis conclude 

that the ECMO membrane did not have an effect on the removal of either medication. However, 

extended daily dialysis removed a considerable amount of both medications from circulating volume. 

Ethambutol doses between 1000-2000 mg/day are suggested for patients on renal replacement therapy 

to achieve target peak levels.100 These conflicting data supports the use of therapeutic drug monitoring 

in ECMO patients to ensure target concentrations.   

Conclusion: 

Pharmacokinetic changes resulting from ECMO and their clinical impact are not yet fully 

characterized for most of the drugs used in critically ill patients. Given the limited patient population, 

the database of PK studies in ECMO patients is largely reliant upon on in vitro data or case studies. 

Although limited, available data can assist health care providers in tailoring dosing regimens for adult 

ECMO patients. Whenever possible, therapeutic drug monitoring should be conducted to ensure 

efficacy while minimizing toxicity.    
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Figure 1: ECMO Configuration  

  

 

  



Table 1: Pharmacokinetic Changes in Critically Ill Patients4  

Pharmacokinetic 

Parameter 

Observed Physiologic Changes in 

Critically Ill Patients  

Resultant Pharmacokinetic Changes 

Absorption ● Decreased gastrointestinal 

and subcutaneous 

perfusion 

● Decreased time to peak 

concentration and area under the 

curve 

Distribution ● Decreased albumin 

● Decrease tissue and organ 

perfusion 

● Increased free drug concentration 

and volumes of distribution for 

albumin-bound medications 

● Increased volumes of distribution 

for hydrophilic medications  

● Reduced free drug concentrations 

in peripheral tissues  

Metabolism ● Acute reduction in hepatic 

blood flow 

● Alteration of hepatic 

enzyme function  

● Reduced clearance of hepatically-

cleared medications  

Elimination ● Acute kidney insufficiency 

● Alteration of active 

transport of medications 

● Reduced clearance of renally-

cleared medications  

 



Figure 2: Impact of ECMO on Drug Pharmacokinetics 
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