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Summary
Background Lipoprotein-associated phospholipase A2 (Lp-PLA2), an infl ammatory enzyme expressed in atherosclerotic 
plaques, is a therapeutic target being assessed in trials of vascular disease prevention. We investigated associations of 
circulating Lp-PLA2 mass and activity with risk of coronary heart disease, stroke, and mortality under diff erent 
circumstances.

Methods With use of individual records from 79 036 participants in 32 prospective studies (yielding 17 722 incident 
fatal or non-fatal outcomes during 474 976 person-years at risk), we did a meta-analysis of within-study regressions to 
calculate risk ratios (RRs) per 1 SD higher value of Lp-PLA2 or other risk factor. The primary outcome was coronary 
heart disease. 

Findings Lp-PLA2 activity and mass were associated with each other (r=0·51, 95% CI 0·47–0·56) and proatherogenic 
lipids. We noted roughly log-linear associations of Lp-PLA2 activity and mass with risk of coronary heart disease and 
vascular death. RRs, adjusted for conventional risk factors, were: 1·10 (95% CI 1·05–1·16) with Lp-PLA2 activity and 
1·11 (1·07–1·16) with Lp-PLA2 mass for coronary heart disease; 1·08 (0·97–1·20) and 1·14 (1·02–1·27) for ischaemic 
stroke; 1·16 (1·09–1·24) and 1·13 (1·05–1·22) for vascular mortality; and 1·10 (1·04–1·17) and 1·10 (1·03–1·18) for 
non-vascular mortality, respectively. RRs with Lp-PLA2 did not diff er signifi cantly in people with and without initial 
stable vascular disease, apart from for vascular death with Lp-PLA2 mass. Adjusted RRs for coronary heart disease 
were 1·10 (1·02–1·18) with non-HDL cholesterol and 1·10 (1·00–1·21) with systolic blood pressure. 

Interpretation Lp-PLA2 activity and mass each show continuous associations with risk of coronary heart disease, 
similar in magnitude to that with non-HDL cholesterol or systolic blood pressure in this population. Associations of 
Lp-PLA2 mass and activity are not exclusive to vascular outcomes, and the vascular associations depend at least partly 
on lipids. 

Funding UK Medical Research Council, GlaxoSmithKline, and British Heart Foundation. 

Introduction
Lipoprotein-associated phospholipase A 2 (Lp-PLA2), an 
enzyme expressed by infl ammatory cells in atherosclerotic 
plaques,1,2 is carried in the circulation bound pre-
dominantly to LDL.3 Lp-PLA2 and other human A 2 
phospholipases (such as secretory phospholipase A 2)

4 
propagate infl ammation by producing precursors of 
arachidonic acid from membrane glycerophospholipids.5 
Lp-PLA2 (also called platelet-activating factor acetyl-
hydrolase) hydrolyses oxidised phospholipids to yield 
pro-infl ammatory products that are implicated in 
endothelial dysfunction, plaque infl ammation, and 
formation of necrotic core in plaque,6,7 and is postulated 
to link oxidative modifi cation of LDL and development of 
infl ammatory responses in the arterial intima.8,9 

Since the initial report in 2000,10 many prospective 
epidemiological studies have investigated the associations 
between circulating Lp-PLA2 (assayed either as its 
enzymatic activity or mass concentration) and subsequent 
risk of vascular disease outcomes. A meta-analysis of 
14 such studies has been reported.11 However, because 
that review was based on published data, it was unable to 

provide detailed analyses (eg, separate examination of 
associations with coronary heart disease and stroke; 
characterisation of the shape of any dose-response 
relations) or to adjust consistently for potential 
confounding factors. 

The objective of the Lp-PLA2 Studies Collaboration,12 an 
analysis of individual data from relevant prospective 
studies, was to assess the independence, specifi city, 
magnitude, and shape of associations of Lp-PLA2 with 
coronary heart disease, stroke, and mortality under 
diff erent circumstances.

Methods
Study design
Details of study selection and data collection have been 
described previously.12 Information about Lp-PLA2 in 
relation to major vascular disease morbidity or cause-
specifi c mortality was supplied by 32 prospective studies, 
19 of which agreed to participate before their publication. 
Data were available for 79 036 participants (webappendix 
pp 2 and 17–20); only two relevant studies (comprising 
<5% of known incident vascular outcomes) were unable 

See Online for webappendix
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to share data.13,14 Study participants were drawn from 
three groups (webappendix p 7): (1) 35 945 people with 
no history of vascular disease at the initial examination 
(baseline); (2) 35 494 patients with a history of stable 
vascular disease (ie, diagnosis more than 30 days before 
baseline of any of myocardial infarction, angina, other 
coronary heart disease, stroke [including transient 
ischaemic attack], peripheral vascular disease, or 
coronary surgery, including revascularisations); and (3) 
10 638 patients diagnosed with acute ischaemic events 
occurring no more than 30 days before baseline. (This 
fi nal group has been analysed separately because risk 
factor levels might be more liable to distortion 
immediately after acute ischaemic events and because 
these studies had much shorter follow-up than did the 
other groups.) Baseline information was not available 
for non-vascular diseases.

Of the 19 studies that measured Lp-PLA2 enzyme 
activity, eight used radiometric and 11 used colorimetric 
assays (of which eight used Colorimetric Activity Method 
[CAM] assays [diaDexus, San Francisco, CA, USA], two 
used Azwell assays [Azwell, Osaka, Japan], and one used 
Cayman assays [Cayman Chemical, Ann Arbor, MI, 
USA]). Of the 25 studies that measured Lp-PLA2 mass 
concentration, two used in-house enzyme-linked 
immunoassays and 23 used commercial immunoassays, 
including three studies that used fi rst generation 
Phospholipase A2—Cardiovascular (PLAC I) assays, 
19 that used second generation (PLAC II), and one study 
that used third generation (PLAC III; all PLAC assays 
were manufactured by diaDexus, San Francisco, CA, 
USA). In registering fatal outcomes, all but one study 
used international classifi cation of disease codings to at 
least three digits, and ascertainment was based on death 

 Lp-PLA2 activity (up to 57 931 participants from 18 studies) Lp-PLA2 mass (up to 58 224 participants from 21 studies)

n Mean (SD) or % Correlation* (95% CI) n Mean (SD) or % Correlation* (95% CI)

Anthropometric markers

Age at survey (years) 57 931 64 (8) 0·02 (–0·00 to 0·05) 58 224 64 (8) 0·06 (0·04 to 0·08)

Body-mass index (kg/m2) 46 278 27 (4) 0·04 (0·02 to 0·05) 48 366 27 (5) –0·01 (–0·03 to 0·01)

Systolic blood pressure (mm Hg) 47 019 138 (22) 0·02 (–0·00 to 0·03) 48 316 137 (21) 0·02 (0·01 to 0·04)

Lipid markers

Total cholesterol (mmol/L) 57 681 5·5 (1·0) 0·41 (0·37 to 0·45) 57 550 5·5 (1·0) 0·28 (0·25 to 0·31)

Non-HDL cholesterol (mmol/L) 56 749 4·26 (1·02) 0·49 (0·45 to 0·52) 53 572 4·26 (1·00) 0·30 (0·27 to 0·34)

HDL cholesterol (mmol/L) 56 838 1·23 (0·35) –0·24 (–0·29 to –0·19) 53 639 1·24 (0·36) –0·07 (–0·12 to –0·02)

Loge triglycerides (mmol/L) 55 649 0·40 (0·51) 0·22 (0·19 to 0·26) 52 595 0·38 (0·51) 0·07 (0·04 to 0·11)

LDL cholesterol (mmol/L)† 28 006 3·09 (0·81) 0·48 (0·41 to 0·55) 29 114 3·44 (0·80) 0·28 (0·22 to 0·34)

Apolipoprotein B (g/L) 36 399 1·10 (0·24) 0·45 (0·38 to 0·51) 28 778 1·05 (0·23) 0·24 (0·17 to 0·30)

Apolipoprotein AI (g/L) 33 790 1·45 (0·23) –0·15 (–0·23 to –0·05) 28 797 1·41 (0·22) –0·07 (–0·13 to 0·00)

Infl ammatory markers

Loge C-reactive protein (mg/L) 52 443 0·87 (1·10) 0·03 (0·01 to 0·05) 47 674 0·83 (1·08) 0·08 (0·04 to 0·11)

Fibrinogen (μmol/L) 17 533 10·04 (2·17) 0·00 (–0·02 to 0·02) 13 169 11·12 (2·17) 0·05 (0·03 to 0·07)

Loge leucocyte count (×10⁹/L) 12 388 1·87 (0·27) 0·03 (0·01 to 0·05) 10 731 1·84 (0·28) 0·07 (0·04 to 0·10)

Categorical variables

Sex

Men 36 222 63% Ref 36 857 63% Ref

Women 21 709 37% –0·21 (–0·25 to –0·17) 21 367 37% –0·10 (–0·13 to –0·07)

Ethnic origin

White 50 922 96% Ref 47 376 96% Ref

Non-white 1906 4% –0·07 (–0·11 to –0·03) 2083 4% –0·08 (–0·12 to –0·03)

Smoking status

Other 44 576 86% Ref 45 871 86% Ref

Current 7268 14% 0·03 (0·01 to 0·05) 7595 14% 0·08 (0·06 to 0·11)

History of diabetes

No 46 741 82% Ref 46 824 82% Ref

Yes 9934 18% 0·00 (–0·02 to 0·02) 10 209 18% –0·03 (–0·05 to –0·02)

Data are shown for the 71 439 participants who were initially healthy or had a history of stable vascular disease at baseline only. Data for the 10 638 participants with recent 
acute ischaemic events are shown in webappendix p 24. Mean Lp-PLA2 activity and mass by assay method are shown in webappendix p 8. 44 716 participants had 
information about both Lp-PLA2 activity and mass. Lp-PLA2=lipoprotein-associated phospholipase A2. Ref=reference category. *Partial correlation coeffi  cient 
(or for categorical variables, the diff erence in standardised Lp-PLA2 compared with the reference category) adjusted for age, sex, baseline history of diabetes, and baseline 
history of vascular disease (as appropriate). †Directly measured LDL cholesterol. 

Table 1: Summary of data available and associations with Lp-PLA2 activity and mass at baseline survey
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certifi cates. 24 of the 32 contributing studies were also 
known to have classifi ed deaths using medical records, 
autopsy fi ndings, and other supplementary sources. 
28 studies used standard defi nitions of myocardial 
infarction based on criteria of monitoring trends and 
determinants in cardiovascular disease.15 21 studies 
reported diagnosis of stroke subtypes on the basis of 
typical clinical features and characteristic changes on 
brain imaging. The study was approved by the 
Cambridgeshire Ethics Research Committee.

Statistical analyses 
The webappendix p 3 provides details of the statistical 
methods. Because of diff erences in the mean and SD of 
concentrations of Lp-PLA2 recorded across studies using 
diff erent assay methods (webbappendix pp 8 and 18), 
concentrations were Z transformed to a mean of 0 and 
an SD of 1 within each study (as well as doing sensitivity 

analyses with exclusion of studies with outlier values). 
Cross-sectional associations of Lp-PLA2 with various 
markers were assessed by calculation of mean Lp-PLA2 
concentrations within tenths of these characteristics, 
with linear mixed models adjusted for age as previously 
described.16 The primary outcome was coronary heart 
disease (ie, non-fatal myocardial infarction or fatal 
coronary heart disease). All participants contributed only 
either the fi rst non-fatal outcome or death during follow-
up recorded at age 20 years or older (ie, deaths preceded 
by non-fatal coronary heart disease or stroke were not 
included in the main analyses). Principal analyses used 
a two-stage approach. Estimates of association were 
calculated within each study before pooling across studies 
by random-eff ects meta-analysis (parallel analyses used 
fi xed-eff ect models). For cohort studies, hazard ratios 
were calculated with Cox proportional hazards models 
stratifi ed by sex and baseline history of vascular disease 

Figure 1: Cross-sectional associations of Lp-PLA2 activity
Table 1 shows number of participants included in each analysis. Webappendix p 9 shows cross-sectional associations of Lp-PLA2 mass. Error bars represent 
95% CIs. r=Pearson’s partial correlation coeffi  cient (95% CI) adjusted for age, sex, history of diabetes, and baseline history of vascular disease. 
Lp-PLA2=lipoprotein-associated phospholipase A2. *Lp-PLA2 activity and mass were standardised to a mean of 0·00 (SD 1·00) in each study. 
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(and, when appropriate, by trial group). Assumptions of 
proportionality of hazards were satisfi ed for both Lp-PLA2 
markers. For case-control studies that were nested within 
prospective cohorts, odds ratios were calculated with 
either conditional or unconditional logistic regression 
models, as appropriate. Odds ratios were assumed to 
approximate hazard ratios and are collectively described 
as risk ratios (RRs). Studies contributing ten or fewer 
outcomes to any particular analysis were excluded. When 
data were missing for covariates, we restricted analyses 
to subsets of participants with complete information.

To assess shapes of association, study-specifi c RRs 
calculated within fi fths of baseline Lp-PLA2 values were 
pooled on the log scale by multivariate random-eff ects 
meta-analysis and plotted against the mean levels in 
each fi fth. We estimated 95% CIs from fl oated variances 
that correspond to the amount of information underlying 
each group (including the reference group).17 Since 
associations were roughly log-linear, we calculated 
regression coeffi  cients to estimate the RR associated 

with one Z score higher Lp-PLA2, equivalent to a 1 SD 
higher Lp-PLA2. RRs were adjusted progressively for 
conventional risk factors. Because directly measured 
LDL cholesterol values were available in only a subset of 
participants, non-HDL cholesterol was used as the 
principal marker of cholesterol content in pro-
atherogenic lipoproteins, avoiding potential biases of 
use of LDL cholesterol estimated by the Friedewald 
formula (webappendix p 6). The Wald χ² statistic 
indicated the evidence of association. Heterogeneity was 
assessed by the I² statistic.18 Diversity in study 
characteristics was investigated by grouping studies by 
recorded characteristics and by meta-regression. We 
investigated eff ect modifi cation by formal tests of 
interaction, with main emphasis on age, sex, and lipid-
related variables. Analyses related to prediction of 
vascular risk were not attempted, principally owing to 
the briefness of follow-up (eg, median follow-up of 
<6 years) and missing information about relevant risk 
factors.19 We used Stata (version 11.0) for analyses.

Figure 2: Minimally adjusted risk ratios for coronary heart disease, ischaemic stroke, and death due to vascular and non-vascular causes by fi fths of Lp-PLA2 activity or mass at baseline
Risk ratios were adjusted for age, sex, baseline history of vascular disease, history of diabetes, and trial group (as appropriate). The webappendix p 11 shows more fully adjusted risk ratios. Data are 
shown for the 71 439 participants who were initially healthy or had a history of stable vascular disease at baseline only. One unit on the standardised scale is equal to 1 SD on the untransformed scale. 
Error bars represent 95% CIs. The sizes of the boxes are proportional to the inverse of the variance of the risk ratios. Lp-PLA2=lipoprotein-associated phospholipase A2. *Fatal and non-fatal events. 

1·0 

1·5 

2·0 

2·5 
Coronary heart disease* Ischaemic stroke* All vascular death Non-vascular death 

Ri
sk

 ra
tio

 (9
5%

 C
I) 

1·0 

1·5 

2·0 

2·5 
Coronary heart disease* Ischaemic stroke* All vascular death Non-vascular death 

Ri
sk

 ra
tio

 (9
5%

 C
I) 

0·7 

0·7 

5221 events, 17 studies

 

1400 events, 7 studies

 

2965 events, 13 studies

 

3317 events, 12 studies

 

5452 events, 18 studies  2265 events, 6 studies  3273 events, 15 studies  3694 events, 15 studies  

–1·5 –1·0 –0·5 0 0·5 1·0 1·5 –1·5 –1·0 –0·5 0 0·5 1·0 1·5 –1·5 –1·0 –0·5 0 0·5 1·0 1·5 –1·5 –1·0 –0·5 0 0·5 1·0 1·5 
Standardised Lp-PLA2 activity  Standardised Lp-PLA2 activity  Standardised Lp-PLA2 activity

 
Standardised Lp-PLA2 activity

Standardised Lp-PLA2 mass Standardised Lp-PLA2 mass Standardised Lp-PLA2 mass Standardised Lp-PLA2 mass

 

–1·5 –1·0 –0·5 0 0·5 1·0 1·5 –1·5 –1·0 –0·5 0 0·5 1·0 1·5 –1·5 –1·0 –0·5 0 0·5 1·0 1·5 –1·5 –1·0 –0·5 0 0·5 1·0 1·5 

A Lp-PLA2 activity 

B Lp-PLA2 mass  

0 

0 



Articles

1540 www.thelancet.com   Vol 375   May 1, 2010

Role of the funding source 
The independent academic coordinating centre, based at 
the University of Cambridge and University of Oxford, 
designed the study, did data collection and management, 
did statistical analysis, and wrote the report. 
GlaxoSmithKline was represented on the study’s 
Operations Group. The study was undertaken 
independently from the funders. AT and JD had full 
access to all the data in the study and had fi nal 
responsibility for the decision to submit for publication.

Results
Mean age at entry of the 79 036 participants was 64 years 
(SD 10). 50 290 (64%) were men, 46 418 (59%) were from 
western Europe, and 20 663 (26%) were from North 
America (webappendix pp 17–18). 7639 incident coronary 
heart disease outcomes, 2547 ischaemic strokes, 
198 haemorrhagic strokes, 1191 unclassifi ed strokes, and 

1490 deaths from other vascular diseases, 4424 deaths 
from non-vascular diseases, and 233 from unknown 
causes were recorded during at least 474 976 person-years 
at risk. In the 71 439 participants who were initially 
healthy or had a history of stable vascular disease 
at baseline, Lp-PLA2 activity was available in 
57 931 participants from 18 studies and Lp-PLA2 mass in 
58 224 participants from 21 studies (table 1 and 
webappendix p 7). 

For Lp-PLA2 activity, much of the variation in mean 
values across studies was explained by diff erences in 
the assay methods used (webappendix p 8). In studies 
using the CAM assay, the mean was 151 nmol/min/mL 
(SD 32), whereas it was 42 nmol/min/mL (14) in studies 
using radiometric assays. For mass, apart from the two 
studies that used in-house ELISA, mean concentrations 
were broadly similar across studies, with a mean of 
312 μg/L (SD 95) in studies that used the PLAC II assay. 
Lp-PLA2 activity and mass were roughly linearly 
associated with each other (partial correlation 
coeffi  cient r=0·51, 95% CI 0·47–0·56; fi gure 1). Lp-PLA2 
activity was higher in men than in women (table 1) and 
positively correlated with non-HDL cholesterol (r=0·49, 
0·45–0·52), directly measured LDL cholesterol (r=0·48, 
0·41–0·55), apolipoprotein B (r=0·45, 0·38–0·51), and 
loge triglycerides (r=0·22, 0·19–0·26), and inversely 
correlated with HDL cholesterol (r=–0·24, –0·29 to 
–0·19) and apolipoprotein AI (r=–0·15, –0·23 to –0·05; 
fi gure 1). Lp-PLA2 activity was only weakly or non-
signifi cantly associated with age, systolic blood 
pressure, body-mass index, smoking, loge C-reactive 
protein (CRP), and fi brinogen or leucocyte count 
(table 1 and fi gure 1). Associations of Lp-PLA2 mass 
followed similar patterns, although mass was more 
strongly associated with smoking and less strongly 
associated with lipids than was activity (table 1 and 
webappendix p 9). A combined estimate of the within-
person variability of Lp-PLA2 could not be made reliably 
because results from diff erent studies were widely 
divergent.20 Furthermore, only some of the sources of 
heterogeneity could be identifi ed (eg, studies that used 
CAM assays tended to have higher reproducibility 
values than did those that used radiometric activity 
assays; webappendix p 10). 

We noted roughly log-linear associations of Lp-PLA2 
activity with risk of coronary heart disease and all 
vascular mortality, and less distinct associations with 
ischaemic stroke and the aggregate of non-vascular 
mortality (fi gure 2 and webappendix p 11). Because RRs 
did not diff er signifi cantly in initially healthy 
participants and in patients with stable vascular disease, 
we combined them to improve precision (fi gure 3). The 
RR for coronary heart disease with 1 SD higher Lp-PLA2  
activity was reduced from 1·16 (95% CI 1·10–1·21) in 
minimally adjusted analyses to 1·10 (1·05–1·16) after 
further adjustment for conventional risk factors (the 
Wald χ² reduced from 33 to 14, most of which was due 

Figure 3: Risk ratios for coronary heart disease, ischaemic stroke, and vascular and non-vascular mortality per 
1 SD higher Lp-PLA2 activity or mass at baseline, adjusted for several risk factors
Risk ratios were adjusted for the non-lipid and lipid risk factors described in table 2. We noted no signifi cant diff erences 
in risk ratios between people with and without a history of stable vascular disease at baseline, apart from for vascular 
death with Lp-PLA2 mass (p=0·007). Data for patients with recent acute ischaemic events are shown in webappendix 
p 16. Error bars represent 95% CIs. The sizes of the boxes are proportional to the inverse of the variance of the RRs. 
Lp-PLA2=lipoprotein-associated phospholipase A2. RR=risk ratio. *Diagnosis more than 30 days before baseline of 
myocardial infarction, angina, other coronary heart disease, stroke (including transient ischaemic attack), peripheral 
vascular disease, or coronary surgery (including revascularisations).†Fatal and non-fatal events. 
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to adjustment for lipids; table 2). We recorded no clear 
evidence of heterogeneity (I²=20%, 95% CI 0–59) nor of 
eff ect modifi cation (webappendix pp 12–13). In subsets 
of participants with relevant information, RRs for 
coronary heart disease were: 1·10 (95% CI 1·02–1·18) 
after adjustment for apolipoproteins AI and B (instead 
of HDL cholesterol and non-HDL cholesterol, 
respectively); 1·12 (1·07–1·18) after adjustment for 
several conventional risk factors plus cholesterol con-
centrations and apolipoprotein B; 1·13 (1·08–1·19) after 
adjustment for directly measured LDL and HDL 
cholesterol (instead of non-HDL and HDL cholesterol); 
and 1·07 (1·00–1·14) after adjustment for several 
conventional risk factors plus Lp-PLA2  
mass (webappendix p 21). The RR for ischaemic 
stroke after adjustment for conventional risk factors 
was 1·08 (0·97–1·20; table 2). Adjusted RRs 
were 0·97 (0·79–1·19) for haemorrhagic stroke, 
1·02 (0·93–1·12) for unclassifi ed stroke, and 1·16 
(1·09–1·24) for all vascular mortality (fi gure 3 and 
webappendix p 14). The RR for the aggregate of non-
vascular mortality was 1·10 (1·04–1·17) after adjustment 
for several risk factors (fi gure 3), with an RR for cancer 
death of 1·05 (0·97–1·14), and 1·18 (1·07–1·30) for 
non-vascular mortality not attributed to cancer 
(webappendix p 22). There were too few outcomes to 
attempt detailed subdivisions of non-vascular deaths 
(eg, by cancer site). 

We recorded roughly log-linear associations of Lp-PLA2  
mass with vascular and non-vascular outcomes (fi gure 2 
and webappendix p 11). Because RRs did not diff er 
signifi cantly in initially healthy participants and in those 
with stable vascular disease (apart from for the outcome 
of vascular death; webappendix p 23), they were combined 
(fi gure 3). The RR for coronary heart disease with 1 SD 
higher Lp-PLA2  mass reduced from 1·15 (1·11–1·19) to 
1·11 (1·07–1·16) after adjustment for several risk factors 
(the Wald χ² reduced from 55 to 25; table 2). Again, we 
noted no clear evidence of heterogeneity (I²=26%, 95% CI 
0–62) nor of eff ect modifi cation (webappendix pp 12–13). 
The adjusted RR for coronary heart disease with Lp-PLA2  
mass was 1·08 (1·04–1·12) after further adjustment for 
Lp-PLA2  activity (further reducing the Wald χ² from 33 to 
14; webappendix p 21). Adjusted RRs for other outcomes 
were: 1·14 (1·02–1·27) for ischaemic stroke (table 2); 
1·13 (1·05–1·22) for all vascular mortality; 1·10 
(1·03–1·18) for the aggregate of non-vascular mortality; 
1·08 (0·98–1·18) for cancer death; and 1·13 (1·04–1·23) 
for non-vascular mortality not attributed to cancer 
(webappendix p 22). 

Adjusted RRs for coronary heart disease with Lp-PLA2 

mass and activity were broadly similar to those with non-
HDL cholesterol and systolic blood pressure (fi gure 4). 
For both Lp-PLA2 markers, we recorded qualitatively 
similar results to those reported in sensitivity analyses 
that: adjusted RRs further for CRP or fi brinogen 
(webappendix p 21); used fi xed-eff ect models 

(webappendix p 15); omitted any individual study to 
assess its relative eff ect on the overall result; and included 
fatal outcomes without censoring previous non-fatal 
outcomes (data available on request). 

The 10 638 patients diagnosed with recent acute 
ischaemic events had much briefer median follow-up 

Lp-PLA2 activity Lp-PLA2 mass

RR (95% CI) Wald 
χ²

1

I² (95% CI) RR (95% CI) Wald 
χ²

1

I² (95% CI)

Coronary heart disease*

Minimally adjusted† 1·16 (1·10–1·21) 33 34 (0–67) 1·15 (1·11–1·19) 55 19 (0–58)

Plus lipid-lowering drug use 1·16 (1·10–1·22) 32 37 (0–68) 1·15 (1·11–1·19) 56 19 (0–58)

Plus systolic blood pressure 1·16 (1·10–1·22) 32 36 (0–67) 1·14 (1·10–1·19) 55 18 (0–57)

Plus body-mass index 1·15 (1·10–1·21) 31 36 (0–68) 1·15 (1·11–1·19) 56 18 (0–57)

Plus smoking status 1·15 (1·09–1·21) 29 36 (0–68) 1·14 (1·10–1·18) 52 16 (0–56)

Plus non-HDL cholesterol 1·12 (1·07–1·17) 28 10 (0–49) 1·11 (1·07–1·16) 32 17 (0–56)

Plus HDL cholesterol 1·11 (1·06–1·16) 20 11 (0–51) 1·11 (1·07–1·16) 25 29 (0–64)

Plus loge triglyceride 1·10 (1·05–1·16) 14 20 (0–59) 1·11 (1·07–1·16) 25 26 (0–62)

Ischaemic stroke‡

Minimally adjusted† 1·08 (1·02–1·15) 7 0 (0–85) 1·18 (1·07–1·30) 11 71 (25–88)

Plus lipid-lowering drug use 1·08 (1·02–1·15) 7 0 (0–85) 1·18 (1·07–1·30) 10 71 (27–89)

Plus systolic blood pressure 1·08 (1·02–1·15) 7 0 (0–85) 1·16 (1·05–1·28) 9 71 (26–89)

Plus body-mass index 1·09 (1·02–1·15) 7 0 (0–85) 1·16 (1·05–1·28) 9 70 (25–88)

Plus smoking status 1·08 (1·01–1·14) 6 0 (0–85) 1·14 (1·04–1·26) 7 69 (20–88)

Plus non-HDL cholesterol 1·07 (0·98–1·16) 2 22 (0–88) 1·13 (1·02–1·26) 5 70 (24–88)

Plus HDL cholesterol 1·07 (0·97–1·19) 2 39 (0–79) 1·13 (1·02–1·26) 5 70 (24–88)

Plus loge triglyceride 1·08 (0·97–1·20) 2 41 (0–80) 1·14 (1·02–1·27) 6 70 (22–88)

Analyses were restricted to participants with complete information. The Wald χ²
1
 statistic indicates the signifi cance of 

the accompanying RR. The I² statistic estimates the percentage of heterogeneity in the study-specifi c RRs that can be 
accounted for by between-study diff erences and not chance. RRs for other outcomes are shown in webappendix p 22. 
Lp-PLA2=lipoprotein-associated phospholipase A2. RR=risk ratio. *For Lp-PLA2 activity: 12 studies, 41 121 participants, 
and 3963 events; for Lp-PLA2 mass: 12 studies, 40 291 participants, and 4361 events. †Adjusted for age and history of 
diabetes, and stratifi ed by sex, baseline history of vascular disease, and trial group (as appropriate). ‡For Lp-PLA2 
activity: four studies, 26 100 participants, and 1129 events; for Lp-PLA2 mass: fi ve studies, 27 529 participants, and 
2097 events

Table 2: Risk ratios for coronary heart disease and ischaemic stroke per 1 SD higher Lp-PLA2 activity or 
mass at baseline, with progressive adjustment for baseline levels of potential confounders

Figure 4: Adjusted risk ratios for coronary heart disease per 1 SD higher 
baseline Lp-PLA2 activity, mass, and several conventional risk factors in 
a common set of participants
Analyses were restricted to participants with complete information 
(3278 events in 34 762 participants who were initially healthy or had a history 
of stable vascular disease at baseline from seven studies). RRs were adjusted 
for the non-lipid and lipid risk factors described in table 2. Error bars represent 
95% CIs. The sizes of the boxes are proportional to the inverse of the variance 
of the risk ratios. Lp-PLA2=lipoprotein-associated phospholipase A2. RR=risk 
ratio. *Current smoker versus other (never or ex-smoker). †To aid comparison 
with the other risk factors, the RR with HDL cholesterol is shown per 1 SD lower 
baseline levels.

Lp-PLA2 activity
Lp-PLA2 mass
Systolic blood pressure
Smoking status*
Non-HDL cholesterol
HDL cholesterol†

 1·11 (1·06–1·16)
 1·11 (1·07–1·15)
 1·10 (1·00–1·22)
 1·34 (1·19–1·51)
 1·10 (1·02–1·18)
 1·15 (1·05–1·25)

RR (95% CI) per 1 SD higher

0·9 1·0 1·1 1·2 1·3 1·4 1·5 1·6
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than did other participants (1·1 [IQR 0·6–2·3] vs 
5·8 [4·0–8·4] years). The cross-sectional correlations of 
Lp-PLA2 in these patients were broadly similar to those 
described above (webappendix p 24). RRs for re current 
vascular outcomes in these patients were essen tially 
null, albeit with wide confi dence intervals 
(webappendix p 16).

Discussion
Our analysis of 79 036 participants has shown that 
Lp-PLA2 activity and mass are associated with each 
other, proatherogenic lipids, and vascular risk. Lp-PLA2 
activity was more strongly associated with various lipid 
markers than was Lp-PLA2 mass, which could indicate 
their varying distributions across lipoprotein classes, 
diff erences in measurement precision, or both.21–23 
By contrast with previous suggestions of risk 
thresholds,24 our analysis shows roughly log-linear 
associations of Lp-PLA2 with risk of coronary heart 
disease and total vascular mortality. The shape of 
relations of circulating Lp-PLA2 with ischaemic stroke 
and with the aggregate of non-vascular mortality are 
less clear than is that with coronary heart disease, 
perhaps as a result of the fewer outcomes recorded. As 
has been reported previously for CRP and fi brinogen,25,26 
Lp-PLA2 is associated with risk of both major vascular 
and non-vascular outcomes. However, because Lp-PLA2 
mass and activity are not materially correlated with 
these circulating infl ammatory markers, Lp-PLA2 
measure ments could have the potential to provide 
distinct insight into the relation between infl ammation 
and athero thrombosis. 

The strength of association for coronary heart disease 
with Lp-PLA2 was reduced after adjustment for baseline 
concentrations of lipids and apolipoproteins. Since 
Lp-PLA2 is physically linked (through apolipoprotein B) 
with LDL, however, the validity of statistical attempts to 
distinguish the eff ects of Lp-PLA2 on risk of coronary 
heart disease from those of proatherogenic lipids 
remains uncertain. A practical approach, as used in this 
study, is to present RRs with and without statistical 
adjustment for such lipid markers, and across 
participants with diff erent lipid concentrations at 
baseline. Even in adjusted analyses, however, substantial 
residual con founding might persist because lipids (and 
other risk factors) are measured with some error,23 and 
because detailed information about some potential 
confounding factors (eg, medication for vascular 
diseases) was not uniformly available from the 
contributing studies. 

The adjusted RR of baseline Lp-PLA2 with risk of 
coronary heart disease was similar to those for 
concentration of non-HDL cholesterol and systolic blood 
pressure. The RR with each of these conventional risk 
factors was, however, fairly moderate in magnitude—ie, 
about 10–15% higher risk per 1 SD higher value of the 
risk factor, or about a third as strong as in previous 

reports in which mean age at baseline survey was about 
10 years lower than that reported in this study.27 Our 
fi ndings of such weaker than expected RRs with 
conventional risk factors could be explained by the older 
mean age of participants in this study, since RRs with 
vascular risk factors tend to decrease with age (by contrast 
with absolute risk).27–29 Furthermore, the high percentage 
of participants who had prevalent vascular disease at 
entry could have disrupted natural relations between risk 
factors and subsequent coronary heart disease. These 
eff ects could, therefore, have blunted RRs with Lp-PLA2. 

The strength and potential limitations of this 
investigation merit consideration. It is a large and 
comprehensive study, encompassing more than 95% of 
the relevant available data. Use of individual records 
allowed detailed analysis and a consistent approach to 
adjustment for several potential confounders. Because 
most contributing studies agreed to participate before 
publication of their data, the eff ect of selective reporting 
should be reduced. However, because data for serial 
Lp-PLA2 measurements were sparse and apparently 
divergent, we could not reliably correct for regression 
dilution.23 If, for example, the true correlation of 
Lp-PLA2 concentrations taken a few years apart in the 
same people is about 0·5, then the degree of 
underestimation of RRs could be as large as two-fold. 
Furthermore, the median follow-up duration in this 
study was about 6 years, which is too brief to enable 
informative study of the incremental value of Lp-PLA2 
measurement in standard 10-year prediction of vascular 
disease risk. These limitations draw attention to the 
need for large studies of fi rst-ever coronary heart 
disease with serial measurements and extended follow-
up. Furthermore, more detailed studies are needed of 
non-vascular outcomes, especially because recorded 
associations of Lp-PLA2 with risk of non-cancer, non-
vascular deaths might be attributed, at least partly, to 
confounding by comorbidity at baseline. Nevertheless, 
a potential limitation of any observational studies of 
circulating Lp-PLA2 is that the enzyme in the blood 
could be an imperfect indicator of its relevance to 
atherosclerotic plaques.

Loss-of-function mutations in the PLA2G7 gene, which 
are common in east-Asian populations, eff ectively 
abolish Lp-PLA2 activity (or, in heterozygotes, 
substantially reduce activity).30 Vascular risk is, however, 
not clearly lower in people carrying such mutations,31,32 
although available studies might have been limited by 
heterogeneous outcomes and possible pleiotropic 
eff ects.8 Because known Lp-PLA2-related genotypes that 
are common in people of European continental ancestry 
have only weak eff ects on Lp-PLA2 activity,33 their study 
would need very large numbers of patients with coronary 
heart disease. Randomised trials of potent reversible 
pharmacological inhibitors of Lp-PLA2 activity should 
help to establish whether modifi cation of Lp-PLA2 can 
reverse vascular risk.34–37 
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