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OBJECTIVES The aim of this study was to examine whether magnesium intake is associated with

coronary artery calcification (CAC) and abdominal aortic calcification (AAC).

BACKGROUND Animal and cell studies suggest that magnesium may prevent calcification within

atherosclerotic plaques underlying cardiovascular disease. Little is known about the association of mag-

nesium intake and atherosclerotic calcification in humans.

METHODS We examined cross-sectional associations of self-reported total (dietary and supple-

mental) magnesium intake estimated by food frequency questionnaire with CAC and AAC in participants

of the Framingham Heart Study who were free of cardiovascular disease and underwent Multi-Detector

Computed Tomography (MDCT) of the heart and abdomen (n ¼ 2,695; age: 53 � 11 years), using

multivariate-adjusted Tobit regression. CAC and AAC were quantified using modified Agatston scores

(AS). Models were adjusted for age, sex, body mass index, smoking status, systolic blood pressure, fasting

insulin, total-to-high-density lipoprotein cholesterol ratio, use of hormone replacement therapy (women

only), menopausal status (women only), treatment for hyperlipidemia, hypertension, cardiovascular dis-

ease prevention, or diabetes, as well as self-reported intake of calcium, vitamins D and K, saturated fat,

fiber, alcohol, and energy. Secondary analyses included logistic regressions of CAC and AAC outcomes as

cut-points (AS >0 and AS $90th percentile for age and sex), as well as sex-stratified analyses.

RESULTS In fully adjusted models, a 50-mg/day increment in self-reported total magnesium intake

was associated with 22% lower CAC (p < 0.001) and 12% lower AAC (p ¼ 0.07). Consistent with these

observations, the odds of having any CAC were 58% lower (p trend: <0.001) and any AAC were 34%

lower (p trend: 0.01), in those with the highest compared to those with the lowest magnesium intake.

Stronger inverse associations were observed in women than in men.

CONCLUSIONS In community-dwelling participants free of cardiovascular disease, self-reported

magnesium intake was inversely associated with arterial calcification, which may play a contributing

role in magnesium’s protective associations in stroke and fatal coronary heart disease. (J Am Coll

Cardiol Img 2014;7:59–69) ª 2014 by the American College of Cardiology Foundation
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oronary artery calcification (CAC) (1–3)
and abdominal aortic calcification (AAC)

(3–5) are measures of advanced atheroscle-
rosis that predict cardiovascular disease

(CVD) morbidity and mortality independently of
traditional CVD risk factors. CAC in particular
has been shown to discriminate and reclassify
future risk for clinical coronary events (6). Dietary
magnesium, found in a broad range of foods
including whole grains, green leafy vegetables, al-
monds, coffee, and dark chocolate, has been linked
to many aspects of cardiovascular health (7–9), and
this mineral may play a key role in vascular calci-
fication. A protective role of magnesium in calci-
fication may underlie previous observations of
higher magnesium intake and lower risk of stroke
(10,11), nonfatal myocardial infarction (MI), sud-
den cardiac death, and fatal coronary heart disease
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(CHD) (12–14).
In vitro (15–19) and animal (19–23)

studies suggest biological mechanisms
through which magnesium may prevent or
reverse plaque formation and calcification.
Magnesium may be acting as a calcium an-
tagonist (24), and it may directly inhibit
hydroxyapatite and crystal precipitation
(25–27). In individuals with chronic kidney
disease (CKD), end-stage renal disease
(ESRD), or on hemodialysisdknown to
exhibit accelerated calcificationdinverse
associations have been reported between
serum magnesium and calcification in
various vascular beds (27) and with related
measures of atherosclerosis or arterioscle-
rosis, such as carotid intima-medial thick-
ness (IMT) and pulse-wave velocity (PWV)
(17). In healthy populations, observational studies
have also found serum magnesium to be inversely
associated with IMT, presence of atherosclerotic
plaque, and progression of atherosclerosis (28,29).
However, serum magnesium is a poorly correlated

biomarker of magnesium intake (30,31). Only one
observational study has examined dietary magnesium
in association with CAC in a generally healthy pop-
ulation, observing no association (32). No study has
examined the association between magnesium intake
and AAC. Therefore, we tested the hypothesis that
higher magnesium intake is associated with lower
levels of calcification of the coronary arteries and
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abdominal aorta in a generally healthy population, by
assessing the cross-sectional association between self-
reported total (dietary and supplemental) magnesium
intake with CAC and AAC in community-dwelling
participants free of clinically apparent CVD.

METHODS

Study population. The National Heart, Lung, and
Blood Institute’s Framingham Heart Study is a lon-
gitudinal, community-based, observational study that
began in 1948 in Framingham, Massachusetts. The
children, and their spouses (“Offspring,” enrolled
1971–1975), of the original cohort participants have
returned for follow-up examination following stan-
dardized protocols approximately every four years
(33). The third-generation cohort (enrolled 2002 to
2005) includes 4,095 children of the Offspring (34).
The present study includes dietary and risk factor
data collected from participants who attended
Offspring exam 7 (1998 to 2001; n¼ 3,539) or Third
Generation exam 1 (2002 to 2005; n ¼ 4,095), and
who participated in exam 1 (2002 to 2005) of the
ongoing Multi-Detector Computed Tomography
(MDCT) substudy. Although previously described
(35), in brief, 3,529 Offspring or Third Generation
participants located in the greater New England area
underwentMDCT scanning.Men were$35 years of
age, women were$40 years of age and not pregnant,
and all participants weighed #350 lbs (35).

We excluded participants from this analysis if
they had missing or uninterpretable CT scans (n ¼
278); had clinically apparent CVD (n ¼ 136),
defined as CABG, valve replacement, percuta-
neous coronary stent placement, pacemaker, stroke,
CHF, MI, or coronary insufficiency identified or
occurring prior to the date of the clinic exam (35);
had missing or invalid dietary information (n ¼
172, reporting <600 or $4,000 kcal/day for
women, <600 or $4,200 kcal/day for men, or with
$12 blank items); self-reported extreme values of
magnesium or calcium intake (n ¼ 48, with intake
values in the 0.5th or 99.5th percentile); or were
missing complete covariate information (n¼ 200, as
defined subsequently). After exclusions, 2,695 par-
ticipants remained in the present analyses.

The original data collection protocols were
approved by the institutional review boards at Bos-
ton University and Massachusetts General Hospital,
f the Dannon Yogurt Advisory Board. Dr. Meigs is supported
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Boston, Massachusetts, and written informed con-
sent was obtained from all participants. The present
study protocol was reviewed by the Tufts University
institutional review board.
Dietary assessment. The Harvard semi-quantitative,
126-item Food Frequency Questionnaire (FFQ)
was used to assess dietary intake (36). The FFQ was
mailed to participants prior to each exam, and par-
ticipants were instructed to bring the completed FFQ
with them to their exam appointment. The relative
validity of the FFQ has been demonstrated in similar
populations, with correlations of 0.69 to 0.72 be-
tween self-reported total magnesium intake esti-
mated from FFQ and dietary records (36). Serum
magnesium, a biomarker of magnesium status, was
available only at Offspring exam 2 (1979–1982),
approximately 20 years prior to the MDCT substudy,
and no biomarker measures are available in the Third
Generation. Therefore, serum magnesium was not
assessed as an exposure in the associations studied
here.
Outcome measures. CAC and AAC were quanti-
fied from CT scans using a modified Agatston
score (AS), as previously described (35,37). In brief,
each participant underwent 8-slice MDCT scan-
ning consisting of 2 chest scans and 1 abdominal
scan (Lightspeed Ultra, General Electric Medical
Systems, Milwaukee, Wisconsin) during a single
end-inspiratory breath-hold. For CAC, 48 contig-
uous 2.5-mm-thick slices were acquired in each
scan. For AAC, the top of the S1 vertebral body
selected as the most caudal extent of the abdominal
volume to be imaged, and 30 contiguous 5-mm-
thick slices were acquired to 15 cm above S1.
A calcified lesion was defined as an area of $3
connected pixels with CT attenuation of >130
Hounsfield units. AS was calculated by multiplying
the area of each lesion with a weighted attenuation
score dependent on the maximal attenuation within
the lesion. We defined prevalent CAC or AAC as
AS >0, and high CAC (35) and high AAC (37)
according to previously defined age- and sex-
specific 90th-percentile cut-points relative to a
healthy reference sample of the Framingham Heart
Study.
Covariates. From interviews, information was
obtained related to each participant’s age, smoking
status, menopausal status, physical activity, educa-
tion, aspirin use, treatment for hyperlipidemia (e.g.,
niacin, fibrates, statins), osteoporosis (e.g., calcitonin
preparations, selective estrogen receptor modulators,
and other drugs affecting bone structure and
mineralization including bisphosphonates, bispho-
sphonate combinations, and bone morphogenetic
proteins), hypertension or CVD prevention (e.g.,
ACE inhibitors, nitroglycerin, calcium-channel
blockers, beta-blockers), or diabetes (oral hypogly-
cemics or insulin), menopausal status, and use of
estrogen or other hormone replacement therapy
(HRT) in women. In women, menopausal status was
defined as >1-year cessation of menses. Body mass
index (BMI) was calculated as weight in kilograms
divided by height in meters squared. Blood pressure
was measured twice and averaged to calculate the
systolic and diastolic blood pressures (SBP andDBP,
respectively). Total cholesterol was measured enzy-
matically and the HDL-C fraction was measured
after the precipitation of low-density lipoprotein
cholesterol and very-low-density lipoprotein choles-
terol. Fasting plasma glucose was measured in fresh
specimens with hexokinase reagent. Fasting plasma
insulin was measured using human-specific radio-
immunoassay in the Offspring and enzyme-linked
immunosorbent assay in the Third Generation
(standardized to the Offspring for analysis). Type 2
diabetes was defined as fasting glucose $126 mg/dl
or use of oral hypoglycemics or insulin. Serum
C-reactive protein (CRP) was measured by particle
enhanced immunonephelometry using high-
sensitivity CRP reagent. Glomerular filtration rate
(GFR) was calculated using the simplified Modifi-
cation of Diet in Renal Disease study equation
from serum creatinine, measured using the modified
Jaffe method (38).
Statistical analyses. All self-reported nutrient intake
values derived from the FFQ were adjusted for total
energy using the residual method (39). Quartile
categories of energy-adjusted, self-reported total
(dietary and supplemental) magnesium intake were
created to present participant characteristics and for
use in regression analyses. Linear trends in the means
or percentages of age- and sex-adjusted (age-, sex-,
and energy-adjusted, for nutrients) participant
characteristics across quartile categories were
assessed using the median intake value in each
category.

We used natural logarithmic (ln)-transformed
values of CAC and AAC, after adding 1 to each
score, due to a large number of zero values and to
reduce skew. Tobit regression is an appropriate model
for calcification data (40) and was applied for our
primary tests of association between ln(CAC þ 1)
or ln(AAC þ 1) and continuous self-reported total
(dietary and supplemental) magnesium intake as
the exposure (PROC LIFEREG, with a censored
threshold of zero CAC or AAC). We present beta
coefficients and SE per 50mg/day of total (dietary and
supplemental) magnesium intake. For analyses



Table 1. Participant Characteristics Across Quartile Categories of Energy-Adjusted Self-Reported Total (Dietary and Supplemental)
Magnesium Intake in the Framingham Heart Study

Quartile 1
(n [ 673)

Quartile 2
(n [ 674)

Quartile 3
(n [ 674)

Quartile 4
(n [ 674) p Value

Magnesium intake, mg/day p Linear trend

Median 258.8 303.6 351.1 427.4

Range, mg/day 159.8–283.9 284.0–325.4 325.5–383.6 383.9–669.4

General characteristics

Age at CT exam, yrs 51.4 (0.4) 52.9 (0.4) 52.4 (0.4) 54.1 (0.4) <0.001

Female, % 35.0 (2.0) 49.0 (2.0) 55.0 (2.0) 59.0 (2.0) <0.001

BMI, kg/m2 28.6 (0.2) 28.0 (0.2) 27.7 (0.2) 27.3 (0.2) <0.001

Physical activity, h/day 4.9 (0.1) 4.5 (0.1) 4.7 (0.1) 4.8 (0.1) 0.19

Current smoker, % 17.0 (1.0) 13.0 (1.0) 11.0 (1.0) 7.0 (1.0) <0.001

Completed at least high school, % 98.0 (0.0) 99.0 (0.0) 99.0 (0.0) 99.0 (0.0) 0.48

College degree or higher, % 35.0 (2.0) 47.0 (2.0) 54.0 (2.0) 56.0 (2.0) <0.001

Current HRT use, % of women 18.0 (2.0) 21.0 (2.0) 20.0 (2.0) 23.0 (2.0) 0.50

Post-menopausal, % of women 49.0 (2.0) 52.0 (2.0) 49.0 (2.0) 55.0 (2.0) 0.09

Clinical and laboratory characteristics

SBP, mm Hg 122.9 (0.6) 122.4 (0.6) 121.3 (0.6) 120.8 (0.6) 0.05

DBP, mm Hg 77.2 (0.4) 76.5 (0.3) 76.0 (0.3) 75.7 (0.4) 0.02

Antihypertensive Rx, % 18.0 (1.0) 16.0 (1.0) 16.0 (1.0) 17.0 (1.0) 0.88

Total cholesterol, mg/dl 201.1 (1.4) 198.3 (1.3) 196.8 (1.3) 193.8 (1.3) 0.002

HDL cholesterol, mg/dl 52.1 (0.6) 53.7 (0.5) 53.2 (0.5) 53.9 (0.6) 0.09

Total-to-HDL cholesterol ratio 4.2 (0.1) 4.0 (0.1) 4.0 (0.1) 3.9 (0.1) <0.001

Lipid-lowering Rx, % 9.0 (1.0) 14.0 (1.0) 12.0 (1.0) 15.0 (1.0) 0.008

Fasting glucose, mg/dl 99.0 (0.8) 98.8 (0.8) 98.9 (0.8) 97.8 (0.8) 0.64

Fasting insulin, pmol/l* 85.6 (1.0) 82.3 (1.0) 79.8 (1.0) 79.0 (1.0) 0.001

Diabetes Rx, % 1.0 (1.0) 2.0 (1.0) 2.0 (1.0) 3.0 (1.0) 0.45

CVD prevention Rx, % 13.0 (1.0) 13.0 (1.0) 13.0 (1.0) 13.0 (1.0) 0.97

Aspirin use, % 13.0 (1.0) 16.0 (1.0) 20.0 (1.0) 22.0 (1.0) <0.001

Osteoporosis Rx, % 4.0 (1.0) 3.0 (1.0) 3.0 (1.0) 4.0 (1.0) 0.64

CRP, mg/l 3.3 (0.2) 3.1 (0.2) 2.7 (0.2) 2.6 (0.2) 0.01

GFR, ml/min/1.73 m2 93.9 (0.7) 94.0 (0.7) 94.1 (0.7) 94.1 (0.7) 0.99

CAC, AS* 5.93 (1.07) 6.49 (1.07) 5.75 (1.07) 4.53 (1.07) 0.002

AS 0, % 53.0 (2.0) 54.0 (2.0) 57.0 (2.0) 61.0 (2.0) 0.01

AS >0–<10, % 14.0 (1.0) 11.0 (1.0) 10.0 (1.0) 10.0 (1.0)

AS 10–<100, % 15.0 (1.0) 15.0 (1.0) 15.0 (1.0) 14.0 (1.0)

AS 100–<400, % 12.0 (1.0) 12.0 (1.0) 10.0 (1.0) 8.0 (1.0)

AS >400, % 6.0 (1.0) 7.0 (1.0) 7.0 (1.0) 7.0 (1.0)

AAC, AS* 24.53 (1.09) 21.33 (1.09) 15.80 (1.09) 15.96 (1.09) 0.001

AS >0, % 56.0 (2.0) 55.0 (2.0) 50.0 (2.0) 51.0 (2.0) 0.02

Continued on the next page

Hruby et al. J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 7 , N O . 1 , 2 0 1 4

Dietary Magnesium and Coronary Artery Calcification J A N U A R Y 2 0 1 4 : 5 9 – 6 9

62
of quartile categories, we present adjusted means
and SEs of ln(CAC þ 1) or ln(AAC þ 1) from least
squares regression (PROC GLM), and p values for
linear trend across quartile categories of self-reported
total (dietary and supplemental) magnesium intake.
Regression models included known or potential
confounders as follows: model 1 was adjusted for
age at MDCT exam (in years), sex, exam cycle,
energy intake (kcal/day), and calcium intake (mg/
day). Model 2 was adjusted as for model 1, plus



Table 1. Continued

Quartile 1
(n [ 673)

Quartile 2
(n [ 674)

Quartile 3
(n [ 674)

Quartile 4
(n [ 674) p Value

Dietary characteristics

Magnesium, total, mg/day 250.9 (1.3) 302.4 (1.3) 350.3 (1.3) 442.7 (1.3) <0.001

From diet, mg/day 250.8 (1.6) 300.5 (1.6) 334.4 (1.5) 380.0 (1.6) <0.001

From supplements, mg/day 1.8 (1.3) 3.6 (1.3) 17.6 (1.3) 64.4 (1.3) <0.001

Calcium, total, mg/day 803.7 (15.2) 947.1 (15.1) 1078.5 (15.0) 1279.0 (15.2) <0.001

From diet, mg/day 696.6 (10.9) 813.5 (10.8) 886.0 (10.7) 929.1 (10.8) <0.001

From supplements, mg/day 112.1 (11.9) 138.5 (11.8) 197.4 (11.7) 354.8 (11.9) <0.001

Energy, kcal/day 2036 (24) 1830 (24) 1949 (24) 2092 (24) <0.001

Vitamin K, mcg/day 109.2 (4.7) 145.9 (4.6) 185.4 (4.6) 236.2 (4.7) <0.001

Vitamin D, IU/day 246.5 (10.0) 345.4 (9.9) 427.7 (9.9) 599.7 (10.0) <0.001

Saturated fat, g/day 27.3 (0.2) 25.9 (0.2) 24.1 (0.2) 21.8 (0.2) <0.001

Fiber, g/day 14.2 (0.2) 17.2 (0.2) 20.0 (0.2) 23.7 (0.2) <0.001

Alcohol, g/day 11.8 (0.6) 11.2 (0.5) 10.4 (0.5) 9.5 (0.6) 0.01

Multivitamin use, % 27.0 (2.0) 39.0 (2.0) 52.0 (2.0) 79.0 (2.0) <0.001

Values are mean (SE), unless otherwise indicated. All characteristics are age- and sex-adjusted, except for age and sex, which are mutually adjusted. Dietary char-
acteristics are also energy-adjusted. *Analyzed in the natural logarithm scale and back-transformed. Geometric mean (geometric SE) are presented.
AAC ¼ abdominal aortic calcification; AS ¼ Agatston score; BMI ¼ body mass index; CAC ¼ coronary artery calcification; CRP ¼ C-reactive protein; CT ¼ computed

tomography; CVD ¼ cardiovascular disease; DBP ¼ diastolic blood pressure; GFR ¼ estimated glomerular filtration rate; HDL ¼ high-density lipoprotein cholesterol;
HRT ¼ hormone replacement therapy; Rx ¼ use of medication/treatment; SBP ¼ systolic blood pressure; SE ¼ standard error.
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known CVD risk factors, which may also be me-
diators of the diet–calcification relationship, in-
cluding BMI (kg/m2), smoking status (never/
former/current), total–to–HDL cholesterol ratio,
fasting insulin (ln-pmol/l), SBP (mm Hg), use of
estrogen or HRT and menopausal status (in
women, both yes/no), and treatment for hyperten-
sion or CVD prevention, hyperlipidemia, or dia-
betes (all yes/no), and alcohol intake (g/day). Model
3, the fully adjusted model, was adjusted as for
model 2, plus dietary factors associated with CVD
or implicated in calcification, including intakes of
fiber (g/day), saturated fat (g/day), vitamin D (IU/
day), and vitamin K (mcg/d). Further adjustment of
model 3 for CRP (mg/l), regular aspirin use (yes/
no), GFR (ml/min/1.73 m2), physical activity (h/
day), treatment for osteoporosis (yes/no), highest
completed education (no schooling; grades 1 to 8;
grades 9 to 11; high school or technical school; some
college; 2-year degree; 4-year degree; graduate or
professional degree), or AAC (as ln[AS þ 1], in
CAC analysis only), did not substantively alter
results (data not shown). In addition, analyses to
account for familial correlations did not materially
alter the results; we therefore present results unad-
justed for these relationships. We assessed potential
effect modification between total magnesium intake
and total calcium intake, sex, BMI, and age by
testing for statistical interaction using cross-product
terms in Tobit regression analyses. As there were no
statistically significant interactions (all, p > 0.05),
interaction terms were removed but covariates
were retained in the models. However, because of
differences in CAC distributions between sexes,
we repeated analyses in men and women separately
using sex-specific quartile categories of energy-
adjusted self-reported total (dietary and supple-
mental) magnesium intake, and present these
exploratory results in the Online Appendix.

In secondary analyses, for comparison with pub-
lished data, we estimated odds of having any CAC
or AAC (AS 0 vs. >0), and high CAC or AAC (AS
< vs. $90th percentile for age and sex relative to a
healthy reference population [35,37]). We present
odds ratios (OR) and 95% confidence intervals (CI)
in each quartile category of energy-adjusted self-re-
ported total (dietary and supplemental) magnesium
intake, and p values for linear trend across categories.
The lowest category of intake was used as the refer-
ence category.

All analyses were conducted in SAS 9.3 (SAS
Institute Inc., Cary, North Carolina). A 2-sided
p value <0.05 was considered statistically signifi-
cant, because our primary outcomesdthe contin-
uous measures of CAC and AACdare correlated.

RESULTS

Clinical and dietary characteristics of participants
across quartile categories of energy-adjusted



Table 2. Associations and SEs of 50-mg/day Increments in Energy-
Adjusted Self-Reported Total (Dietary and Supplemental) Magnesium
Intake with CAC and AAC

Model* n by SE p Value

CAC as ln(AS þ 1)

Model 1 2,695 �0.18 0.06 0.001

Model 2 �0.13 0.05 0.011

Model 3 �0.25 0.07 <0.001

AAC as ln(AS þ 1)

Model 1 2,681 �0.19 0.06 0.001

Model 2 �0.09 0.06 0.09

Model 3 �0.13 0.08 0.07

*Tobit regression analyses were adjusted as follows: model 1 adjusted for calcium and
energy intake, age, sex, and exam cycle. Model 2 adjusted as for model 1, plus BMI, smoking
status, SBP, fasting insulin, total-to-high-density lipoprotein cholesterol ratio, use of hormone
replacement therapy (women only), menopausal status (women only), treatment for
hyperlipidemia, hypertension or cardiovascular disease prevention, or diabetes, and alcohol
intake. Model 3 adjusted as for model 2, plus intake of vitamins K and D, saturated fat, and
fiber. yb Coefficients of Tobit regression can be interpreted as most linear regression
coefficients on the natural log scale, that is, as percent changes per 50-mg/day increments in
magnesium intake, obtained by exponentiating the coefficient and subtracting 1. For
example, in model 3 of the CAC regression, the –0.25 b coefficient can be thought of as
[e–0.25 – 1] ¼ –22%, or 22% lower CAC per 50-mg/day increment in intake.
Abbreviations as in Table 1.
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self-reported total (dietary and supplemental) mag-
nesium intake are presented inTable 1.Mean adjusted
self-reported total (dietary and supplemental) mag-
nesium intake was 338 mg/day. On average, supple-
mental sources of self-reportedmagnesium intake only
contributed 6.4% and 4.6% of total self-reported
magnesium intake in women and men, respectively.
In analyses of trend from lowest to highest category of
Table 3. Adjusted Means and SEs of CAC and AAC across Quartile
(Dietary and Supplemental) Magnesium Intake*

Quartile 1
(n [ 673)

Quartile 2
(n [ 674)

Magnesium intake, mg/day

Median 258.8 303.6

Range 159.8–283.9 284.0–325.4

CAC as ln(AS þ 1)

Model 1 1.78 (0.07) 1.86 (0.07)

Model 2 1.77 (0.07) 1.85 (0.07)

Model 3 1.85 (0.08) 1.88 (0.07)

AAC as ln(AS þ 1)

Model 1 3.21 (0.09) 3.04 (0.09)

Model 2 3.10 (0.09) 3.06 (0.08)

Model 3 3.13 (0.10) 3.07 (0.08)

*For AAC, n ¼ 2,681. Differences between intake categories, when the outcome is
differences between highest and lowest categories by exponentiating the mean in
means. For example, in model 3 of the AAC regression, e2.80/ e3.13 ¼ 0.72, or 28% low
for as in Table 2.
Abbreviations as in Table 1.
self-reported total (dietary and supplemental) mag-
nesium intake, those in the highest categoryweremore
likely to be female, older, more educated, have lower
BMI, DBP, total cholesterol, total–to–HDL choles-
terol ratio, fasting insulin, CRP, and an overall
healthier diet. They were also more likely to use lipid-
lowering treatment and aspirin, and less likely to have
smoked regularly in the prior year.
Primary analyses. CAC was present (AS >0) in
43.7% of participants (33.7% of women and 53.7%
of men). AAC was more prevalent: 52.9% of par-
ticipants had some detectable AAC (AS >0), and
prevalence was similar between the sexes (50.9% of
women and 55.3% of men). Of those with prevalent
AAC, 65.3% had detectable CAC (55.3% of
women and 74.3% of men with prevalent AAC, had
detectable CAC).

In the fully adjusted model (model 3), higher
self-reported total (dietary and supplemental) mag-
nesium intake was associated with 22% lower CAC
per 50 mg/day increment (Table 2). Self-reported
total magnesium intake was significantly associated
with 17% lower AAC in the basic model (model 1,
p ¼ 0.001), but was attenuated after adjusting for
risk factors (model 2, 9% lower; p ¼ 0.09), and
vitamins D and K, saturated fat, and fiber (model 3,
12% lower; p ¼ 0.07). In sex-specific exploratory
analyses, although tests of interaction with sex were
not statistically significant, the inverse associations
appeared to be stronger in women than in men for
both continuous outcomes (Online Table 1). The
Categories of Energy-Adjusted Self-Reported Total

Quartile 3
(n [ 674)

Quartile 4
(n [ 674) p Value

p Linear trend

351.1 427.4

325.5–383.6 383.9–669.4

1.74 (0.07) 1.52 (0.07) 0.004

1.75 (0.07) 1.52 (0.07) 0.006

1.74 (0.07) 1.43 (0.08) 0.0005

2.77 (0.09) 2.77 (0.09) 0.001

2.81 (0.08) 2.83 (0.09) 0.01

2.80 (0.08) 2.80 (0.10) 0.02

presented on the natural log scale as done here, can be interpreted as percent
the highest and lowest categories, and taking the ratio of the exponentiated
er AAC in the highest compared to the lowest intake category. Models adjusted



Figure 1. Adjusted Means of CAC and AAC According to Self-Reported
Total (Dietary and Supplemental) Magnesium Intake

Adjusted means � SE of CAC (green circles) and AAC (white circles) (as ln
[AS þ 1]) according to median values of energy-adjusted self-reported total
(dietary and supplemental) magnesium intake in quartile categories in 2,695
participants of the Framingham Heart Study. Highest versus lowest intake was
associated with 34% lower CAC (p linear trend: <0.001), and 28% lower AAC
(p linear trend: 0.02). Values are adjusted for age, sex, exam cycle, body
mass index, smoking status, systolic blood pressure, fasting insulin, total–
to–high-density lipoprotein cholesterol ratio, use of hormone replacement
therapy (women only), menopausal status (women only), treatment for
hyperlipidemia, hypertension or cardiovascular disease prevention, or dia-
betes, and intake of energy, calcium, alcohol, vitamins K and D, saturated fat,
and fiber. AAC ¼ abdominal aortic calcification; AS ¼ Agatston score;
CAC ¼ coronary artery calcification.
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trends of mean CAC and AAC across quartile
categories of self-reported total (dietary and sup-
plemental) magnesium intake are consistent with
the Tobit regression results (Table 3, Fig. 1 for
pooled analyses, and Online Table 2 and Online
Fig. 1 for sex-specific analyses).
Secondary analyses. We examined the associations
of self-reported total (dietary and supplemental)
magnesium intake with odds of having any calci-
fication (AS >0) and odds of having high calcifi-
cation (AS $90th percentile for age and sex) at
either vascular site (Table 4, Fig. 2). In fully
adjusted models, compared to those in the lowest
quartile category of self-reported total (dietary and
supplemental) magnesium intake, those in the
highest category had 58% lower odds of any CAC,
37% lower odds of high CAC, and 34% lower
odds of any AAC. There was a nonsignificant in-
verse association between high intake and odds of
having high AAC. Sex-specific exploratory ana-
lyses resulted in similar, statistically significant as-
sociations for odds of any CAC between men and
women. For odds of high CAC, any AAC, and
high AAC, linear trends were not statistically sig-
nificant in either sex (Online Table 3, Online
Figs. 2 and 3).

D I SCUSS ION

The main finding of this study is that in individuals
free of clinically apparent CVD, higher self-reported
total (dietary and supplemental) magnesium intake,
estimated by food frequency questionnaire, is asso-
ciated with lower levels of CAC, a sensitive, dis-
criminating measure of subclinical CVD and overall
burden of atherosclerosis. Those with the highest
self-reported total magnesium intake had approxi-
mately one-half the odds of having any detectable
CAC, compared to those with the lowest intake,
which suggests magnesium intake may have a pro-
tective role in inhibiting calcification initiation. The
observed associations with CAC were significant
after adjusting for a range of cardiometabolic risk
factors and potential mediators, as well as after
further adjusting for AAC levels, suggesting
that magnesium may be acting specifically in the
coronary arteries over and above its other known
anti-inflammatory, antihypertensive, and antidysli-
pidemic functions to affect calcification (7–9).

To date, only 1 cross-sectional analysis, con-
ducted in MESA (the Multi-Ethnic Study of
Atherosclerosis), has examined self-reported mag-
nesium intake in relation to CAC. Although
no significant association was observed between
self-reported magnesium intake and CAC in that
study, the authors observed that higher magnesium
intake was associated with lower odds of high
common carotid IMT (32), an indicator of
atherosclerotic disease moderately correlated with
CAC. Some differences between our analysis and
the MESA study that may explain the inconsistent
observations include population differences (multi-
ple races/ethnicities in MESA; predominantly white
in Framingham), inclusion of calcium intake as a
confounder in our analysis, and the application of
cut-points of CAC (>0 or >100) in MESA, rather
than also evaluating it as a continuous measure.
Although we did not examine IMT or other mea-
sures of plaque in our analysis, and thus can-
not comment on magnesium intake’s associations
with atherogenic plaque, we cannot rule out the
possibility that magnesium has additional roles in



Table 4. Adjusted Odds Ratios and 95% CIs of Prevalent or High CAC or AAC across Quartile Categories of Energy-Adjusted
Self-Reported Total (Dietary and Supplemental) Magnesium Intake

Quartile 1
(n [ 673)

Quartile 2
(n [ 674)

Quartile 3
(n [ 674)

Quartile 4
(n [ 674) p Value

Magnesium intake, mg/day p Linear trend

Median 258.8 303.6 351.1 427.4

Range 159.8–283.9 284.0–325.4 325.5–383.6 383.9–669.4

CAC >0

Model 1 1 (Ref) 0.95 (0.73–1.23) 0.79 (0.60–1.03) 0.60 (0.45–0.81) <0.001

Model 2 1 (Ref) 0.93 (0.71–1.23) 0.79 (0.60–1.05) 0.58 (0.43–0.79) <0.001

Model 3 1 (Ref) 0.84 (0.63–1.11) 0.65 (0.47–0.89) 0.42 (0.29–0.62) <0.001

CAC $90th

Model 1 1 (Ref) 1.20 (0.89–1.62) 0.94 (0.68–1.29) 0.71 (0.50–1.02) 0.02

Model 2 1 (Ref) 1.26 (0.92–1.72) 0.99 (0.71–1.38) 0.71 (0.49–1.03) 0.02

Model 3 1 (Ref) 1.20 (0.87–1.64) 0.92 (0.64–1.32) 0.63 (0.40–0.98) 0.01

AAC >0

Model 1 1 (Ref) 0.99 (0.75–1.30) 0.71 (0.54–0.94) 0.70 (0.51–0.95) 0.01

Model 2 1 (Ref) 1.07 (0.80–1.44) 0.76 (0.56–1.02) 0.77 (0.55–1.06) 0.03

Model 3 1 (Ref) 1.02 (0.75–1.37) 0.69 (0.49–0.95) 0.66 (0.44–0.98) 0.01

AAC $90th

Model 1 1 (Ref) 0.75 (0.57–0.99) 0.62 (0.46–0.83) 0.73 (0.54–0.99) 0.05

Model 2 1 (Ref) 0.80 (0.59–1.08) 0.65 (0.48–0.90) 0.79 (0.57–1.10) 0.17

Model 3 1 (Ref) 0.76 (0.56–1.04) 0.61 (0.43–0.86) 0.70 (0.47–1.05) 0.10

Any calcification defined as AS 0 versus >0; high calcification as AS < versus$90th percentile for age and sex on the basis of a healthy reference population. For AAC,
n ¼ 2,681. Models adjusted for as in Table 2.
CI ¼ confidence interval; other abbreviations as in Table 1.
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plaque formation separate from calcified plaque, a
relationship that has also been shown in some ani-
mal and cell studies (21,22).
Several studies have examined common sources of

dietary magnesiumdchocolate (41), coffee (42,43),
fish (44), and whole grains (45)din relation to CAC,
and the observations of these studies have been
consistent. In the Family Heart Study, chocolate
consumption was inversely associated with odds of
CAC (AS>100) in a dose-response manner (41). In
the Rotterdam Study, higher coffee intake was
inversely associated with severe CAC in older
women, but not older men (43). In younger in-
dividuals (18 to 30 years of age), coffee showed no
association with the presence or progression of CAC
over 15 to 20 years (42). Whole-grain intake was not
associated with CAC in another MESA study,
despite significant inverse associations with other
CVD risk factors (45). Finally, researchers in Rot-
terdam reported that those with higher fish intake
had lower prevalence of moderate CAC (AS 11 to
400) and severe CAC (AS >400) compared to
nonconsumers, associations that were not attribut-
able to intake of either docosahexaenoic or
eicosapentaenoic aciddthe fatty acids to which fish
consumption’s cardiovascular benefits are often
attributed (44). These inconsistencies may be
attributed to variation in study populations, variation
in the contributions of these foods to overall mag-
nesium intake, and the complex interaction of foods
in the diet. A magnesium supplementation trial has
not yet been conducted in generally healthy adults
with respect to CAC, nor are we aware of CAC as a
secondary endpoint in magnesium supplementation
trials with other primary endpoints. However, a small
pilot study in patients with ESRD undergoing
chronic hemodialysisdat particularly high risk for
rapid calcification progressiondreported a non-
significant progression of CAC of just 8% (versus
typical 50%) over 18 months using a magnesium/
calcium carbonate binder (approximately 700mg/day
elemental magnesium and 1,200 mg/day elemental
calcium) in lieu of the standard calcium-based
phosphate binder (46).

To our knowledge, ours is the first study to
examine self-reported total magnesium intake in
relation to AAC, which like CAC is an indepen-
dent predictor of CVD morbidity and mortality



Figure 2. Adjusted Odds of Prevalent or High CAC and AAC According to
Self-Reported Total (Dietary and Supplemental) Magnesium Intake

Adjusted ORs (95% CI) of any (AS >0) (A) or high (AS $90th percentile for age
and sex relative to a healthy referent population) (B) CAC (green circles) or
AAC (white circles) according to median values of energy-adjusted self-re-
ported total (dietary and supplemental) magnesium intake (mg/day) in quartile
categories in 2,695 participants of the Framingham Heart Study. CI ¼ confi-
dence interval; OR ¼ odds ratio; other abbreviations as in Figure 1.
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(3–5). Despite some pathological differences (47),
CAC and AAC are thought to be similar phe-
nomena, and presence of AAC is a good predictor
of CAC. We are unable to explain the differing
magnitudes of association we observed between self-
reported total magnesium intake and calcification in
the 2 vascular beds, apart from speculating on a
potential primary role of magnesium in unknown
processes more predominantly associated with, and
therefore specific to, atherosclerotic calcification of
the coronary arteries. We had hypothesized that
magnesium intake would have similar associations
with both CAC and AAC. One of magnesium’s
putative roles in preventing biomineralization of
extraskeletal tissue is its inhibition of hydroxyapa-
tite formation, in which magnesium destabilizes
the crystal structure and inhibits precipitation
(17,26,27). In addition, magnesium has been shown
to inhibit osteogenic differentiation of vascular
smooth muscle cells (15,16,48) and increase the
expression of calcification-inhibiting proteins, while
decreasing activity of bone-related proteins (16)
and preventing cell apoptosis (15).

Because current CT imaging technology does not
differentiate between medial and intimal calcifica-
tion, we could not rule out the presence of medial
calcification as a possible explanation for some of
the differing associations between CAC and AAC.
Medial calcification, which occurs in conditions of
longstanding metabolic imbalance (e.g., diabetes,
CKD), is thought to be rare in the coronary arteries
(49), but may be more prevalent in the abdominal
aorta in the presence of mild metabolic or mineral
derangement. However, our results did not mate-
rially change after excluding participants with
prevalent diabetes (5% of study sample) or impaired
kidney function (2% of study sample), and we
controlled for glycemic traits in our analysis. These
discrepancies, and dietary magnesium’s role in
processes specific to atherosclerotic calcification in
the coronary arteries, deserve further investigation.
Study limitations. As a cross-sectional analysis, we
cannot infer a temporal relationship from our ob-
servations. Although our observations have plausible
biological underpinnings, the mechanisms underly-
ing these associations remain elusive. High self-
reported magnesium intake may be a surrogate
marker of a healthy lifestyle; for example, higher
intake trended with less smoking and lower
BMI, but more use of lipid-lowering medications
and aspirin. Although we controlled for lifestyle
characteristics implicated in CVD or calcification
(e.g., smoking, calcium, fiber, saturated fat,
physical activity, education), nevertheless, unknown
confounding and residual confounding may yet be
factors, as they are in any observational study, and
their effects on the magnitude or significance of our
observations are difficult to estimate. Longitudinal
studies followed by randomized trials will be neces-
sary to confirm the relationship between magnesium
intake and calcification. The estimated means of
calcium in categories of self-reported magnesium
intakewere derived from a linear regression approach;
while estimates from Tobit and linear regressions
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were similar, the presented means may overestimate
or underestimate the magnitude of the association.
Finally, our participants were predominantly white
of European descent; thus our observations may not
be generalizable to other races/ethnicities.

CONCLUS IONS

We observed strong, favorable associations between
higher self-reported total (dietary and supplemental)
magnesium intake and lower calcification of the
coronary arteries, an important, discriminating
measure of subclinical atherosclerotic burden that has
been shown to reclassify risk of CVD morbidity and
mortality. Our observations suggest that future
researchmay considermagnesium’s effect onCAC to
be a potential physiological mechanism through
which dietary magnesium mitigates risk of stroke,
non-fatal MI, and fatal CHD. In addition to further
research onmagnesium in relation to the number and
density of calcified lesions, and calcified and non-
calcified plaque burden, prospective research is also
required to elucidate magnesium’s relationships with
these and other sites of vascular calcification, as well as
the possible benefits of magnesium supplementation
in inhibiting onset and progression of atherosclerosis
and calcification, with the goals of identifying mag-
nesium’s mechanism of action in lowering the risk of
future cardiovascular events, and ultimately lowering
the burden of cardiovascular disease.
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