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Introduction

Historically, interest in the therapeutic implications of
angiogenesis has centered on the inhibition of new
vascular growth to retard the spread of cancer[1,2]. More
recently, however, there has been equal enthusiasm for
the therapeutic implications of inducing new vascular
growth in ischaemic disorders of the coronary and
peripheral vasculature. While medical, surgical and per-
cutaneous catheter-based interventions provide sympto-
matic relief in a significant proportion of the ischaemic
population, a substantial cohort of patients with ad-
vanced or refractory disease currently has no acceptable
therapeutic alternative. In this context, the promotion of
neovascularization within ischaemic vasculature is based
upon a valid and intuitively rational scientific concept
and presents an innovative approach to treatment of
ischaemic diseases in the cardiovascular system. The
purpose of this paper is to elucidate some of these
scientific concepts and to review the recent advances in
the field of angiogenesis.
Principles of angiogenesis

Angiogenesis can be defined as the budding of capillaries
that leads to the formation of new microvessels from
pre-existing vascular structures. This process can be
differentiated from vasculogenesis, which describes the
formation of blood vessels from committed mesenchy-
mal stem cells, mainly during embryogenesis[3,4]. En-
hancement of blood flow to ischaemic myocardium can
result from either true angiogenesis, as defined above, or
from the recruitment of pre-existing coronary collater-
als. In fact, it is not entirely clear whether one or both of
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these mechanisms might be involved in the development
of coronary collaterals in the ischaemic myocardium[5].
Mechanisms of blood vessel formation

Formation of new blood vessels involves several steps[6]:
dissolution of the matrix underlying the endothelium;
migration, adhesion, and proliferation of endothelial
cells; and, finally, formation and maturation of a new
three-dimensional tubular structure to support the flow
of blood[3,7]. Numerous elements stimulate angiogenesis
and can influence each step of the process (Fig. 1). In
theory, modification of the process at any of these stages
may confer the ability to control angiogenesis and
harness its effects to treat the ischaemic heart. These
influences are briefly reviewed here.

Angiogenesis is a very complex process. Conceptually,
the major triggers of this process can be simplified into
three broad categories: mechanical, chemical, and
molecular factors (Fig. 1). Clearly, these elements may
work in concert and contribute to the regulation of the
angiogenic process at various stages.
Mechanical influences

Haemodynamics
Haemodynamics may influence angiogenesis in several
ways. Augmentation of blood flow during exercise[8], the
hyperthyroid state, and the administration of certain
drugs have all been shown to stimulate vascular
sprouting[9–11]. Furthermore, it has been observed that,
while large vessels with low flow tend to reduce or
obliterate the endovascular diameter, the lumen of
smaller vessels with chronically increased high flow
tends to enlarge[12]. Augmentation of blood flow, there-
fore, may both stimulate vascular sprouting and
maintain patency of the newly formed collateral ves-
sels, thereby providing blood flow to the ischaemic
myocardium.
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Shear stress
Shear stress has an important influence on the develop-
ment of collaterals in the ischaemic myocardium. Shear
� 2001 The European Society of Cardiology



904 R. Tabibiazar and S. G. Rockson
stress and stretch on the myocardium can lead to
up-regulation of adhesion molecules in the endo-
thelium[13], attraction of inflammatory cells[14,15], and
stimulation of endothelial cells to produce growth
factors[16,17]. Myocardial stretch, of the magnitude
observed in clinically significant left ventricular dysfunc-
tion, has been shown to increase vascular endothelial
growth factor expression in the heart[18,19]. Endothelial
cells can be viewed as mechano-receptors that respond
to physical forces and therefore play an important role
in linking mechanical influences with the molecular
signals of angiogenesis.
Chemical influences

Hypoxia and oxygen tension gradient
The molecular machinery that initiates angiogenesis may
be driven by deprivation of oxygen and other important
nutrients[20]. Hypoxia stimulates macrophages to release
various factors including platelet-derived growth factor
and fibroblast growth factor 1 and 2[21]. Hypoxia has
Eur Heart J, Vol. 22, issue 11, June 2001
Molecular influences

Inflammation
Animal studies suggest that the presence of inflam-
matory cells, including macrophages and neutrophils, is
sufficient to produce angiogenesis[33,34]. Following myo-
cardial necrosis, the influx of inflammatory cells, includ-
ing macrophages, monocytes, and platelets, produces
the release of cytokines that are capable of stimulating
fibroblast growth factor and vascular endothelial growth
factor expression. Vascular endothelial growth factor, in
turn, can stimulate and recruit other macrophages to
augment the inflammatory response and further stimu-
late angiogenesis. The inflammatory response can induce
the expression of receptors (e.g. selectins, ICAM-1,
VCAM-1) for various extracellular matrix proteins,
monocytes, macrophages, and also for the growth fac-
tors already mentioned[35]. Myocardial ischaemia, with
an inflammatory response much inferior to infarction,
may provide a very different mechanism for angio-
genesis.
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Figure 1 Hypothetical scheme for number of factors that
lead to angiogenesis and influence each step of the process.
Conceptually, the major triggers of angiogenesis can be
simplified into three broad categories: mechanical, chemi-
cal, and molecular factors. These elements may work in
concert and contribute to the regulation of the angiogenic
process at various stages. Formation of new blood vessels
involves several steps: dissolution of the matrix underlying
the endothelium; migration, adhesion, and proliferation of
endothelial cells; and, finally, formation and maturation of
a new three-dimensional tubular structure to support the
flow of blood. In theory, modification of the process at any
of these stages may confer the ability to control angiogen-
esis and harness its effects to treat the ischaemic heart.
Angiogenic factors
The existence of angiogenic factors was first noted with
the isolation of a tumour factor that was shown to be
mitogenic for endothelial cells and later found to be a
member of the fibroblast growth factor family[1]. Several
other peptides have subsequently been recognized to
play a role in angiogenesis (see discussion below). These
include: acidic and basic fibroblast growth factor (1 and
2), vascular endothelial growth factor, platelet-derived
growth factor, insulin-like growth factor-1, angiogenin,
transforming growth factor (TGF� and TGF�), tumour
necrosis factor (TNF�), hepatocyte growth factors,
granulocyte colony-stimulating factor, placental growth
also been shown to upregulate vascular endothelial
growth factor[22,23], owing both to increases in the
transcription mediated by hypoxia inducible factor 1
and an increase in the stability of vascular endothelial
growth factor mRNA[24,25]. The augmentation of vascu-
lar growth induced by hypoxia might be mediated, at
least in part, by nucleotides released from ischaemic
tissues[26,27]. Hypoxia also increases the expression of
vascular endothelial growth factor receptors (FLK and
FLT)[28,29]. This renders the endothelium susceptible to
either the systemic or the paracrine effects of pre-existing
vascular endothelial growth factor[23,30]. Animal studies
on localization of vascular endothelial growth factor
expression during the vascularization process have em-
phasized the potential role for a hypoxic gradient in the
regulation of angiogenesis[21,31]. The ability to induce
vascular endothelial growth factor expression in re-
sponse to hypoxia may play a crucial role in regulating
angiogenesis in the ischaemic heart. A recent study has
described inter-individual heterogeneity in the ability to
induce vascular endothelial growth factor in response to
hypoxia[32], although the mechanism has not yet been
elucidated.
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factor, interleukin 8, and several others[36]. Of the
large number of angiogenesis factors that have been
described, the fibroblast growth factor and vascular
endothelial growth factor families have been most inten-
sively studied. Although several elements are likely to be
involved in the process of angiogenesis, as previously
discussed, in vivo studies have amply demonstrated that
the simple administration of an angiogenic growth fac-
tor is sufficient to stimulate the cascade of events that
lead to angiogenesis and to the augmentation of blood
delivery.
Role of growth factor receptors
Several modulatory control mechanisms for the biologi-
cal effects of growth factors have been elucidated.
Administration of growth factors in the normal heart
does not result in angiogenesis[12,37]. This phenomenon
has been explained by the lack of expression of appro-
priate growth factor receptors within the normal tissue.
Studies of tumour angiogenesis have documented that
up-regulation of receptor density is an important modu-
latory mechanism in angiogenesis. It has been shown
that the FLK and FLT (vascular endothelial growth
factor) receptors are up-regulated by hypoxia[28,29] and,
possibly, by the presence of other growth factors. Vas-
cular endothelial growth factor and fibroblast growth
factor, when administered simultaneously, potentiate
one another’s effect[38,39], perhaps reflecting reciprocal
up-regulation of their respective receptors[12].
Down-regulation of angiogenic inhibitors
The presence of angiogenic growth factors and their
respective receptors have been demonstrated in normal
tissue[40]. Despite the coexistence of both angiogenic
ligands and their receptors in normal tissues, persistent,
active neovascularization is not typically observed. This
implies the influence of an angiogenic inhibitor. Induc-
tion of the cascade of events that leads to angiogenesis
would, therefore, require the appropriate down-
regulation of the inhibitory pathway. One such putative
inhibitor has been isolated from porcine heart[41] and
other inhibitors have been described more extensively in
the cancer literature[42].
Activation of endothelium
The role of the endothelium in angiogenesis cannot be
over-emphasized[43]. Endothelial cells have a well-
described, pivotal role in the endovascular regulation of
cellular proliferation, migration, adhesion to extracellu-
lar matrix, and the formation of a three dimensional
lumen for blood flow. In addition, once ‘activated’, these
cells provide a substrate for the adherence of inflamma-
tory cells, permit an increased receptor density, and
propagate the release of crucial growth factors[7]. Acti-
vation of endothelial cells is one of the earliest events in
the formation of new blood vessels. Endothelial cell
activation, either by mechanical or chemical factors,
increases the sensitivity to various growth factors. The
endothelial cells respond by secreting growth factors and
a variety of proteolytic enzymes that dissolve the extra-
cellular matrix, releasing stored growth factors and
providing substrate for endothelial cell proliferation.
Extracellular matrix
The extracellular matrix also plays an integral role in the
process of angiogenesis. The dissolution of the matrix
beneath the endothelium is the first step in the cascade
that results in neovascularization. In addition, the extra-
cellular matrix can serve as a reservoir for growth
factors through the avid binding of these molecules to
the heparin contained within the extracellular matrix.
Furthermore, inflammation can elicit changes in the
extracellular matrix that alter the binding of growth
factors to the heparin molecules and their release into
the adjacent cellular milieu.
Known angiogenic factors

Historical perspective
The potential relationship of angiogenesis to cancer
therapy was first described in the early 1970s[1]. Al-
though the applicability of therapeutic angiogenesis to
myocardial ischaemia was initially conjectured in the
same decade[44], intense experimental exploration of this
concept has not occurred until quite recently. The exist-
ence of spontaneously occurring angiogenesis has been
inferred from those individuals in whom vigorous
endogenous collateralization of an underperfused region
can prevent the symptomatic and functional conse-
quences of chronic myocardial ischaemia. Moreover, the
observation that infarcted human myocardium expresses
angiogenic factors that resemble those produced by
various tumours[45] has further stimulated interest in the
ability to harness this phenomenon as a therapeutic tool.
As individual growth factors have been identified
throughout the years, their role in angiogenesis of the
ischaemic heart has been systematically investigated[46].
Peptide angiogenic factors
Numerous peptide growth factors have been identified
in relation to tumour angiogenesis[36,46]. Many of these
same factors play a potential role in cardiac angio-
genesis as well[47–52].

Fibroblast growth factor-2, also known as basic fibro-
blast growth factor, is an 18 kilo-Dalton (kD), single-
chain peptide with extensive mitogenic capability. The
fibroblast growth factors represent some of the most
potent of the known angiogenic peptides. As a family of
growth factors, fibroblast growth factors have almost
ubiquitous distribution and a wide scope of biological
activity. They act as regulatory proteins to induce the
proliferation of a broad range of cell types, including
cells with epithelial, mesenchymal, and neural origins[46],
and mediate a broad spectrum of developmental and
pathophysiological processes in vivo and in vitro[53].
They are produced by, and can act directly upon,
vascular endothelial and smooth muscle cells, and func-
tion as angiogenic factors[36]. One of the characteristic
properties of fibroblast growth factors is their ability to
Eur Heart J, Vol. 22, issue 11, June 2001



906 R. Tabibiazar and S. G. Rockson
bind to glycosaminoglycan heparin. This property al-
lows them to be classified among the heparin-binding
growth factors[54]. The failure of fibroblast growth factor
to be secreted in tissue culture is another characteristic
biological feature of these molecules. This property can
be ascribed to the absence of a signal sequence to direct
their secretion, and to their requisite association with
extracellular matrix[55,56]. The biological responses to the
fibroblast growth factors are induced through the acti-
vation of specific receptors and intracellular pathways in
a tissue- and temporally-specific manner[57,58]. The fibro-
blast growth factor-receptor family consists of four
membrane-spanning tyrosine kinases. Each of these re-
ceptors gives rise to multiple isoforms as a result of
alternative splicing of their mRNAs[53,58]. Fibroblast
growth factor-2 can be activated through physical
stimuli, such as hypoxia, and through the activity of a
variety of other growth factors[21,59]. Recent studies have
suggested that vascular endothelial growth factor and
fibroblast growth factor-2 may have synergistic effects,
both in vitro[39] and in vivo[60]. Since fibroblast growth
factor-2 is one of the most potent mitogens and chemo-
tactic factors for the vascular endothelial cell, it has been
considered the prime candidate for inducing angiogen-
esis in the ischaemic heart. Numerous studies, both in
animal models and in humans, have begun to investigate
the potential role of fibroblast growth factor-2 in the
treatment of coronary artery disease.

Fibroblast growth factor-1, or acidic fibroblast
growth factor, in its mature form, is a 16 kD polypeptide
and, like other members of the fibroblast growth factor
family, has a wide spectrum of activity. It has potent
mitogenic and chemotactic effects on a variety of cell
types, including fibroblasts, endothelial cells, and
smooth muscle cells[46]. It has been implicated in the
control of capillary proliferation during embryogenesis,
tumour progression, and wound healing. Fibroblast
growth factor-1 is upregulated during collateral for-
mation[49] and in the regeneration of endothelial cells
after injury[61]. Hypoxia has been shown to induce
release of fibroblast growth factor-1 by macrophages[21].
Despite the apparent therapeutic potential of fibroblast
growth factor-1, initial in vivo studies with this agent
have proven disappointing[62].

Vascular endothelial growth factor, also known as
vascular permeability factor, is a basic 45 kD heparin-
binding glycoprotein. It was first described as a secreted
mitogenic factor specific for endothelial cells in vitro
and a pro-angiogenic molecule in vivo[63]. Numerous
additional functions have since been attributed to the
vascular endothelial growth factor molecule. These in-
clude: the induction of vascular permeability[64,65], the
increased expression of serine proteases[66] and intersti-
tial collagenases[67], that can promote a prodegradative
environment during angiogenesis, and induction of
vasodilatation[68]. Vascular endothelial growth factor
exists in various forms and is expressed in various tissues
in the body. Four isoforms of vascular endothelial
growth factor (VEGF121, VEGF165, VEGF189 and
VEGF ) arise from alternative splicing of the mRNA
206
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from a single gene[69]. All vascular endothelial growth
factor isoforms are secreted glycoproteins that can
homodimerize and bind to heparin, except for VEGF121.
VEGF165 is the predominant form and is secreted by a
variety of normal and transformed cells. The genetic and
structural properties of vascular endothelial growth fac-
tor and its isoforms have been reviewed elsewhere[63].
Interestingly, regulation of vascular endothelial growth
factor gene expression has been shown to be effected by
hypoxia in both in vitro and in vivo models[22,23]. Other
vascular endothelial growth factor-like proteins have
also been cloned[70]. Among those, VEGF-B appears to
be particularly highly expressed in cardiac tissue[71,72]

whereas, VEGF-C may play a role in formation of
lymphatics[73,74]. Nevertheless, some studies suggest that
VEGF-C may also have some angiogenic properties in
the vasculature of the blood capillary[75]. Vascular endo-
thelial growth factor has a crucial role in embryogenesis,
inasmuch as deletion of the vascular endothelial growth
factor gene in early embryogenesis is a lethal muta-
tion[76,77]. Vascular endothelial growth factor has also
been implicated as a regulator of physiological angio-
genesis[78]. The first evidence supporting this hypothesis
was provided by in situ hybridization studies on the rat
ovary. These investigations revealed that there is a
temporal and spatial relationship between vascular en-
dothelial growth factor expression and proliferation of
microvessels in the ovary. In addition to its role in
embryogenesis and physiological angiogenesis, vascular
endothelial growth factor also has a role in the neo-
vascularization response in pathological conditions like
ischaemia[21,22,79]. Vascular endothelial growth factor is
thought to function by interacting with two high-affinity
receptors, flk-1 and flt-1[80,81]. It is believed that both
receptors play an important role in the angiogenesis of
the ischaemic heart, since their respective levels of ex-
pression have been observed to rise in response to
hypoxia[27,82]. In vivo studies have demonstrated that
acute myocardial infarction stimulates a rapid and pro-
longed increase in the expression of both vascular
endothelial growth factor and its receptors, with charac-
teristic spatial and temporal kinetics[28]. A role for
vascular endothelial growth factor has also been conjec-
tured in such diverse pathological entities as rheumatoid
arthritis and proliferative retinopathies[42].
Other growth factors
Several other factors have been implicated in the angio-
genesis process, and their role has been investigated to
varying degrees and previously reviewed elsewhere[36,46].
Among these factors, TGF� induces an increase in the
level of vascular endothelial growth factor mRNA and
protein expression[83] and, thus, its angiogenic effect
maybe mediated by vascular endothelial growth factor.
Although the expression of these growth factors has
been studied extensively in vitro, their temporal and
spatial expression in vivo models is not well-studied[84].
Non-peptide angiogenic factors
Several non-peptide molecules also have been reported
to be angiogenic. These include: l-butyryl glycol[85,86],
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the prostaglandins PGE1&2
[87–90], nicotinamide[26,91],

adenosine[89,92–94], certain degradation products of
hyaluronic acid[95], and other uncharacterized low-
molecular-weight factors[96]. Some of these factors are
felt to have a secondary role, since they do not act
through the direct stimulation of endothelial prolifer-
ation, migration, and protease production. The mechan-
ism by which some of these agents induce angiogenesis is
unclear. In any event, they do not appear to exert their
effect through increasing the bioavailability of pre-
formed heparin-binding growth factors sequestered in
the extracellular matrix [97].

Among the low molecular-weight factors, adenosine
may have a unique role in stimulating angiogenesis.
Adenosine has been shown to increase vascular density
in the chick chorioallantoic membrane model in a dose-
dependent manner[93,98] and stimulate proliferation of
human endothelial cells in culture[94]. Adenosine for-
mation stems from the ischaemia-induced catabolism of
high energy phosphates[99] and this has been shown to
increase vascular endothelial growth factor mRNA stab-
ility via the A1 receptor[24,82]. Theoretically, adenosine
might mediate the stimulating effect of hypoxia upon
angiogenesis[100]. It is unclear whether adenosine or its
metabolic by-products can induce angiogenesis in
vivo[100].

A potential modulatory role for nitric oxide has also
been entertained in both tumour angionesis[101,102] and
other forms of neovascularization[103,104]. In fact, it is
conjectured that a defective endothelial synthetic
mechanism for nitric oxide may provide an additional
therapeutic target in patients with advanced vascular
obstruction[105].
From basic science to clinical practice

Many therapeutic advances in cardiology have contrib-
uted to the improved management of coronary artery
disease. Clinical benefits have been accrued through
multiple risk factor modification, enhancement of local
oxygen delivery through direct percutaneous interven-
tions and surgical revascularization, and through the
pharmacological manipulations that maximize myocar-
dial function after injury and prevent further ischaemic
events. Nonetheless, there persists a large group of
patients who cannot benefit from these interventions. It
is for this subgroup of individuals with refractory myo-
cardial ischaemia, in particular, that therapeutic angio-
genesis may hold particular promise.

Since occlusion of a portion of the coronary vascula-
ture may be tolerable in the presence of appropriate
collateralization, the ability to pharmacologically induce
the growth of coronary collaterals could, in principle,
markedly change the natural history of ischaemic heart
disease. Coronary collaterals are believed to develop
either as a result of neovascularization or of the recruit-
ment of neighbouring vessels. As discussed above,
numerous biological factors stimulate these responses
and can influence each step of the angiogenic process
(Fig. 1). In theory, modification of any of these steps,
individually or in concert, may confer the ability to
control angiogenesis and change the natural history of
ischaemic heart disease.
Insights derived from animal models of
angiogenesis

Although it is likely that the concurrent effects of several
factors produce a concerted response that results in new
vessel formation, as previously discussed, it is entirely
conceivable that therapeutic administration of a sole
angiogenic growth factor might be sufficient to augment
blood delivery to the ischaemic myocardium. Such
phenomena have repeatedly been demonstrated through
in vivo studies of experimental angiogenesis (some are
reviewed below).
Fibroblast growth factor-2
The intra-coronary administration of fibroblast growth
factor-2 has been studied in a canine acute infarct
model. In this approach, when infusion of the growth
factor immediately followed induction of acute myocar-
dial infarction, reduction of the infarct size and in-
creased neovascularization were both observed[106]. It is
as yet unclear whether fibroblast growth factor-2 in-
duces the observed neovascularization or whether it is
responsible for the recruitment of preexisting collateral
vessels, inasmuch as administration occurred in the
acute setting. Some benefit of fibroblast growth factor-2
has also been shown in the chronic ischaemic setting,
utilizing various modes of delivery[107–109]. Reduction of
infarct size in the acute setting has repeatedly been
demonstrated[106,110,111].
Fibroblast growth factor-1
Studies with fibroblast growth factor-1 have demon-
strated conflicting evidence of benefit in the process of
therapeutic angiogenesis[62,112–114]. In vivo studies have
demonstrated that fibroblast growth factor-1 has mini-
mal effect on non-injured quiescent endothelial cells, but
exerts a marked mitogenic effect on injured smooth
muscle cells[62]. In one series of experiments, admin-
istration of exogenous fibroblast growth factor-1 in
myocardium has shown striking vascular smooth muscle
hyperplasia exclusively within areas of myocardial in-
farction but without significant collateral formation[62].
Others have demonstrated radiographic and histological
evidence of stimulated coronary collateral forma-
tion[113,114] and have shown that exogenous fibroblast
growth factor-1 improves myocardial perfusion to the
collateral-dependent ischaemic myocardium[115].
Vascular endothelial growth factor
While the VEGF121 isoform has recently been receiving
increasing attention, most of the earlier animal studies
Eur Heart J, Vol. 22, issue 11, June 2001
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have been performed with VEGF165, the more abundant
isoform in humans. Studies in various animal models
have investigated the role of vascular endothelial growth
factor administration in the setting of myocardial is-
chaemia. In a canine model of ameroid coronary occlu-
sion, daily intracoronary vascular endothelial growth
factor injection enhanced coronary collateral blood flow
and increased myocardial distribution vessel density
compared to control animals treated with saline[116]. In a
similar study, although vascular endothelial growth fac-
tor administered via the left atrium did not increase
collateral development, it significantly enhanced neo-
intimal accumulation[117]. The difference in results be-
tween the two studies is not clear. Another study using
intracoronary protein injection also demonstrated an
increase in myocardial perfusion, although it was
associated with systemic hypotension[118]. A different
study in a porcine model showed that periadventitial
and extraluminal mini-pump administration of vascular
endothelial growth factor improved myocardial contrac-
tility and enhanced coronary blood flow and collateral-
ization[119]. A more recent study using gene transfer
methodology showed that direct myocardial injection of
an adenoviral vector encoding vascular endothelial
growth factor cDNA improved myocardial contractility
and perfusion with enhanced collateralization[120]. While
these studies have established the feasibility of thera-
peutic angiogenesis through local administration of
angiogenic growth factors, site-specific stimulation of
angiogenesis has also been demonstrated for systemic
administration of vascular endothelial growth factor[121].
These studies demonstrated that vascular endothelial
growth factor appears to be an effective angiogenic
agent in animal models of the ischaemic heart and
warranted further investigation for its applicability in
clinical studies.

Considerable therapeutic efficacy has been demon-
strated for vascular endothelial growth factor admin-
istration either as protein or gene-transfer in animal
models of peripheral ischaemia. Earlier studies demon-
strated a significant dose-dependent augmentation in
perfusion accompanied by evidence of increased collat-
eral formation after intramuscular administration of
vascular endothelial growth factor in the ischaemic
rabbit hindlimb[122]. Successful transfection of naked
DNA encoding vascular endothelial growth factor in a
rabbit model of hindlimb ischaemia showed augmented
vascularity and perfusion to the ischaemic limb[123].
In a different study, site-specific transfection of plasmid
encoding cDNA of VEGF165 resulted in augmented
development of collateral vessels and increased capillary
density documented by serial angiography[124]. Vascular
endothelial growth factor was shown to improve
endothelium-dependent vasorelaxation in microvascu-
lar collaterals in a rat hindlimb model of peripheral
ischaemia[125]. In a similar animal model, adenoviral
vector encoding vascular endothelial growth factor
stimulated an angiographic increase in the vascularity
of the treated limb compared with each control
group[126].
Eur Heart J, Vol. 22, issue 11, June 2001
Therapeutic angiogenesis in human vascular
disease

Although there are several mechanisms by which the
angiogenic process is stimulated, early in vivo studies
suggest that administration of individual growth factors
may be sufficient to augment blood delivery to hypoxic
tissues. These early studies have stimulated the current,
extensive research effort to define the role of growth
factors in the therapy of myocardial ischaemia. The
high-affinity endothelial receptors for various angiogenic
growth factors are now well-recognized to mediate pro-
liferation, migration and differentiation of the cellular
populations required for the augmented growth of new
vascular structures in ischaemic tissues[46,127–129]. How-
ever, before therapeutic angiogenesis becomes a reality
in human ischaemia, several critical issues will require
resolution.
Which growth factors?
As already discussed, there are several known growth
factors that might serve as suitable candidates for the
stimulation of coronary angiogenesis. Among these,
fibroblast growth factor-2 and vascular endothelial
growth factor have been the most extensively studied,
both in animal models and in humans. It is as yet
unclear whether one or a combination of these growth
factors can infer the maximal angiogenic response in
human ischaemic heart disease. Moreover, no compari-
son studies have yet been undertaken. Furthermore, a
synergistic effect of these two important factors has been
demonstrated, at least in a rabbit model of hindlimb
ischaemia[60]. The search for new angiogenic factors and
their effects on angiogenesis of the ischaemic heart is
ongoing and intense[130–132]. For example, investigation
of the angiogenic potential of nucleotide metabolites has
revealed a potential role for certain pyridines[26,92,96,97].
The study of vasculogenesis during embryonic develop-
ment has traditionally led to the identification of im-
portant mediators of angiogenesis[4,131,133,134]. Other
molecular modulators, that affect angiogenesis at the
cellular receptor or the intracellular level, may also
present a potential for novel pharmaceutical inter-
ventions for ischaemic heart disease.
Which patient population?
Currently, clinical studies of angiogenesis are focused
upon the patient with severe, refractory angina. The
question remains whether the benefits of therapeutic
angiogenesis can be extended to other ischaemic disease
states, like diabetes, ischaemic cardiomyopathy and con-
gestive heart failure, and peri-infarction ischaemia. One
study has shown that vascular endothelial growth
factor–gene transfer restored the neovascularization re-
sponse in a mouse model of diabetes[135,136]. In patients
with acute myocardial infarction, where thrombus for-
mation may pre-empt the adequate formation of collat-
eral vascularization, angiogenic factors may accelerate
the process of collateralization and thereby limit the size
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of the infarct[45,137]. Animal studies with fibroblast
growth factor-2 suggest that this kind of intervention is
feasible[106,110,111]. A recent study has shown that mice
deficient in vascular endothelial growth factor isoforms
developed ischaemic cardiomyopathy and ultimately
died of cardiac failure[138]. One implication of this study
is that treament with angiogenic factors might promote
revascularizaion and improve heart failure[139].
Strategies for drug delivery
In simplest terms, therapeutic angiogenesis can be ef-
fected by one of two mechanisms of drug delivery:
through transfer of the relevant genetic material, or
through therapeutic administration of the angiogenic
factor itself (Tables 1 and 2). There has not yet been a
systematic comparison to determine which mode of drug
delivery is most efficacious. The native factor can be
administered either via the systemic route or locally, as
noted in Table 1. Alternatively, local sustained-release of
the native factor or direct gene therapy may provide
efficient delivery of angiogenic factors and facilitate
more prolonged local exposure to the growth factors
and minimize systemic side effects.
Native factors
While it might reflect the simplest mode of drug delivery,
systemic administration of the native factors raises the
spectre of several potential undesired effects of angio-
genesis. These include: the acceleration of proliferative
retinopathy and, perhaps, of atherosclerosis[140–143]; the
stimulation of neoplastic growth; hypotension mediated
through cytokine release[118], localized oedema and in-
flammation[144], telangiectasias[144], anaemia, thrombo-
cytopenia, and membranous nephropathy[145]. In
contrast, local delivery of growth factors obligates lower
dosing requirements and therefore might reduce the
likelihood of associated systemic side-effects. Local drug
delivery, however, has its own limitations, such as the
technical difficulty associated with delivery of the growth
Table 1 Various modes of drug delivery

Gene transfer Native factor

Plasmid DNA Systemic
Single vs repeated administration

Liposomal DNA
Local

Viral vectors Polymer-based devices
Recombinant adenovirus
Retrovirus
Adeno-associated virus

(slow releasing polymers,
hydrogel,
microspheres, etc.)

Intravascular delivery
(porous balloons, stents,
iontophoresis, simple
injection)

Cardiac catheterization
TMR/PMR
‘Mini’ thoracotomy
CABG surgery
factors to the precise site of injury. Prolonged, yet
time-limited exposure might realistically require multiple
procedures for growth factor delivery. In addition, local
injection of growth factors entails the potential risks
associated with the required procedures, as well as the
potential for local reactions to the drugs, including
inflammation and arrhythmias. A number of slow-
release matrices such as polymers (hydrogels and porous
polymers), microspheres, stents, heparin beads, and
porous balloon catheters have been studied to allow
controlled local delivery of growth factors[146].
Gene transfer
Theoretically, the advantages of gene transfer include
the reliability of gene expression at the target organ and
the elimination of the technical difficulties that attend
direct drug delivery[114]. Undesired effects of systemic
drug administration are avoided[121]. Successful gene
therapy of human disease poses distinct challenges[147].
The disappointing recent clinical trials of human gene
therapy in such inherited diseases as cystic fibrosis and
Duchenne’s muscular dystrophy underscore the com-
plexity of such endeavours[147]. Some of the noted dis-
advantages of gene therapy include the low transfection
rates with currently available vectors, and the fact that
the gene products were expressed for a short duration
and only in limited amounts[147,148]. Local inflammatory
responses to the introduction of viral vectors pose an
additional potential side effect of gene transfer.

As previously discussed, the ideal mode of drug
delivery for therapeutic angiogenesis would entail a
simple mechanism for the delivery of growth factor to
the precise site of injury. Exposure to the growth factor
would be prolonged, yet time-limited. Fortunately, the
same characteristics that pose difficulties in other disease
processes, such as low transfection rates and transient,
localized expression of gene product, suggest that the
currently available vectors might be ideally suited for
therapeutic angiogenesis[149]. Disappointing results in
gene therapy have traditionally entailed the delivery of
intracellular gene products; in contrast, vascular endo-
thelial growth factor includes a leader sequence that
allows its secretion from intact cells[150]. Therefore,
despite low transfection rates, the paracrine effects of the
secreted peptide may be sufficient to achieve a meaning-
ful angiogenic effect[144,151–153]. Numerous animal and
human studies have evaluated the safety and success of
such gene therapy in the ischaemic heart[107,149,153–155].

Several important issues must be addressed to opti-
mize the potential of angiogenic gene therapy. Chief
among these is the identification of the ideal vector for
gene transfer. Liposomes and plasmid DNA have been
used in animal models of myocardial ischaemia[156–158]

and the latter has also been evaluated in clinical trials for
peripheral vascular disease[144,154,159]. The disadvantage
of these vectors is the inconsistent and low transfection
rate[147]. Recombinant viruses have generally been
highly efficient vectors. Retroviruses, although they pro-
duce stable transfection, require dividing cells for infec-
tion[148,149]. The experience with vectors based on human
Eur Heart J, Vol. 22, issue 11, June 2001
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Dosing and frequency
Another issue that also requires further attention, with-
out reference to the specific strategy for drug delivery, is
the determination of the optimal dosing, timing, and
frequency of factors administered. No comparative
studies have been performed to address this specific
concern. As discussed earlier, the optimal angiogenic
effect is theoretically achieved with prolonged, yet time-
limited exposure to the growth factors administered.
Administration of a single dose of the growth factor,
whether systemically or locally, takes into account the
assumption that binding of the factors to the extracellu-
lar matrix can provide a reservoir for their sustained
delivery at the targeted area. Preliminary results of a
recent clinical trial demonstrate that single intra-
Eur Heart J, Vol. 22, issue 11, June 2001
coronary dosing of fibroblast growth factor-2 over a
wide range of drug concentration (0·33–36 �g . kg�1) is
safe[162].

An alternative method to a single dosing strategy is to
employ frequent, repeated administration of the growth
factors. In the VIVA study, patients received a single
intracoronary dose of vascular endothelial growth factor
at doses of either 17 or 50 ng . kg�1 min�1 on the first
day followed by repeated intravenous dosing on days 3,
6, and 9[163]. The lack of favourable preliminary results
in this study is currently unexplained, but may be related
to dosing and frequency of the drug used. Most studies
of therapeutic angiogenesis, however, utilize some
method for slow and sustained delivery of the factors to
avoid frequent dosing. In one study, use of microcap-
sules containing 100 �g of fibroblast growth factor-2
implanted in the subepicardial fat at the time of CABG
surgery was not associated with any ill effects and may
have improved the patients’ angina symptoms[164].
Table 2 Potential modes of delivery of gene therapy for angiogenesis in the
ischaemic heart[146,149]

Site of injection Method of delivery Vectors used Select references

Intra-coronary Adenovirus [107]
Intramyocardial injection Epicardial (open chest) Adenovirus [161]

Plasmid [154]
Intracavitary (percutaneous)

Intra-arterial wall transfection Hydrogel balloon Plasmid [144]
Double balloon Plasmid, [186]
Vector coated stents Liposome

Pericardial application Transfer of cells Native [187]
Table 3 Proposed end-points to document therapeutic angiogenesis in ischaemic
heart disease

Clinical end-point Functional end-point
(stress vs rest) Angiographic end-point

Angina class Nuclear medicine Angiograms (TIMI flow)
CHF class Assess perfusion Morphometric vessel counting
Exercise tolerance Echocardiogram MRI (myocardial perfusion)
Mortality Assess LV function

Regional vs global
MRI

Assess LV function
Treadmill

CHF=congestive heart failure; LV=left ventricular; TIMI=Thrombolysis in Myocardial Infarc-
tion; MRI=magnetic resonance imaging.
Outcome assessment: how to quantitate the effectiveness
of therapeutic angiogenesis?
In animal studies, direct study of the treated tissues
facilitates the assessment of treatment efficacy. Histo-
chemical evaluation of the myocardial tissue and the
demonstration of enhanced endothelial cell proliferation
adenoviruses has been more promising. Adenoviruses
can transfer large amounts of recombinant genes into
a wide variety of dividing and non-dividing cells[148].
Several animal models[107,160] and clinical trials have
effectively utilized adenoviral vectors for intramyocar-
dial and intracoronary delivery[149]. Recently, the com-
pletion of a phase I assessment of direct intramyocardial
administration of a vascular endothelial growth factor-
expressing adenovirus vector has been described in indi-
viduals with severe coronary artery disease[161].
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provide objective documentation for new vessel forma-
tion. Clearly, analogous assessment in the human clini-
cal context is impossible. Unfortunately, diagnostic
tools to identify effective human angiogenesis are, as yet,
largely unavailable. Table 3 summarizes the objective
clinical end-points utilized in the clinical studies to date.

Angiographic methods can be considered for direct
demonstration of increased vascularity both in animal
models and in human clinical trials. Angiographic
methods suffer from the implicit failure to discriminate
between true angiogenesis and collateral recruitment.
Furthermore, existing radiographic methods may not be
sensitive enough to detect collateral vessels of less than
200 �m in diameter[165]. Newer microangiography sys-
tems, with a spatial resolution of 30 �m, have been
utilized to investigate the development of collateral
arteries in the rat ischaemic hindlimb[166].

A therapeutic increase in vascularity should ideally
also result in an improvement in myocardial perfusion.
This can be objectively documented through myocardial
scintigraphic methods. Here, again, the evidence is in-
direct and, in addition, changes in vascular reactivity,
induced by the growth factors, may alter coronary flow.
This may be difficult to differentiate from an absolute
increase in vessel number or density. Functional studies
that assess left venticular function, such as echocardiog-
raphy, do not purport to quantify new vessel formation,
but may provide important prognostic parameters to
assess the success of treatment with angiogenic factors.

Obviously, the ultimate goal of therapeutic angiogen-
esis is the induction of clinical improvement within the
cohort of treated patients. Therefore, the effectiveness of
therapy within any regimen for therapeutic angiogenesis
must include an assessment of the response of such
clinical variables as angina class, heart failure class,
exercise tolerance and time, and cardiovascular event
rates, particularly in comparison to the response of
placebo recipients.
Human clinical trials

Because of the encouraging results in animal models
using individual growth factors, several clinical trials
have been designed to study the effect of these angio-
genic growth factors in humans. The first clinical trials
were done in ischaemic limbs[167].
Peripheral vascular insufficiency

Pre-clinical findings in a case report suggested that
intra-arterial gene transfer of a plasmid that encodes for
VEGF165, using a hydrogel polymer coating of an
angioplasty balloon, was able to improve blood supply
to the ischaemic limb[144]. In another case report, a
patient treated with six consecutive, weekly intravenous
infusions of recombinant fibroblast growth factor-2
demonstrated a beneficial clinical response by week 4 of
therapy. Clinical responses were characterized by an
improved walking distance, relief of ischaemic pain, a
marked reduction in analgesic consumption, and healing
of persistent, unresponsive, painful inflammation of the
hallux[168]. In a larger study, intramuscular injection of
naked plasmid DNA encoding VEGF165 was performed
in 10 limbs of nine patients with critical limb ischaemia.
The majority of the treated limbs demonstrated in-
creased collateral formation on angiography and im-
proved flow on magentic resonance imaging along with
significant improvement of the ankle–brachial index[155].
Large clinical trials are currently underway to address
therapeutic angiogenesis in human peripheral vascular
disease.
Chronic coronary insufficiency

The clinical trials that are currently underway address
only those patients with severe ischaemic heart disease
who are refractory to conventional medical treatment
and who are not candidates for the conventional
mechanical revascularization procedures. The ongoing
clinical trials to evaluate the safety and efficacy of
therapeutic angiogenesis are summarized in Table 4.
Native protein
The first study to report efficacy for angiogenic therapy
of human coronary heart disease examined the role of
basic fibroblast growth factor in 20 patients with three-
vessel coronary disease undergoing CABG surgery[114].
In this study fibroblast growth factor (0·01 mg . kg�1

body weight) was injected close to the vessels after the
completion of internal mammary artery to left anterior
descending coronary artery anastomosis. All the patients
had additional peripheral stenoses of the left anterior
descending coronary artery or one of its diagonal
branches. Twelve weeks later, formation of capillaries
could be demonstrated angiographically around the sites
of injection and a capillary network sprouting from the
proximal part of the coronary artery could be shown to
have bypassed the stenoses and rejoined the distal parts
of the vessel. No association was made between the
radiographic finding and clinical improvement. Other
studies are currently underway to further investigate the
efficacy of fibroblast growth factor-2 in treating chronic
coronary ischaemia[162,164,169].

The VIVA trial represents the first large placebo-
controlled trial to investigate the efficacy of vascular
endothelial growth factor treatment in ischaemic myo-
cardium[163]. In this study patients with viable, under-
perfused myocardium who were not candidates for other
interventions, were randomized in double-blind fashion
to receive recombinant human vascular endothelial
growth factor or placebo. The effects of therapy were
measured clinically as well as objectively with exercise
treadmill time, ejection fraction, and nuclear perfusion.
The trial, although showing encouraging safety and
Eur Heart J, Vol. 22, issue 11, June 2001
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tolerability reports, has not yet shown favourable results
compared to placebo.
Gene therapy
To date, there are no final results on controlled trials
demonstrating consistent angiogenesis in the ischaemic
heart through gene therapy. However, given the results
in the animal models for chronic coronary and periph-
eral ischaemia, several Phase I and II clinical trials for
angiogenic gene therapy are underway. In a small phase
I study, naked plasmid DNA encoding VEGF165 was
injected directly into the ischaemic myocardium of five
patients via a mini left anterior thoracotomy. All
patients had significant reduction in angina, and post-
operative left ventricular ejection fraction was slightly
improved in two of the patients. Objective evidence of
reduced ischaemia was documented using dobutamine
single photon emission computed tomography
(SPECT)-sestamibi imaging and, with coronary angiog-
raphy, showed improvement[154]. Similar results were
recently reported for a larger cohort of patients as
well[170]. In a separate Phase I study of 21 patients with
clinically significant coronary artery disease, an adeno-
virus vector, expressing human VEGF121 cDNA, was
administered by direct myocardial injection into an area
of reversible ischaemia either as an adjunct to conven-
tional coronary artery bypass grafting or as sole therapy
via a minithoracotomy[161]. While no systemic or
cardiac-related adverse events were reported, clinical
improvement was noted in all patients. Coronary angi-
ography and stress sestamibi scintigraphy suggested
improved wall motion in the area of vector admin-
istration, while in the group in which gene transfer was
the only therapy, treadmill exercise assessment also
suggested some improvement[161].
Transmyocardial laser revascularization and
percutaneous myocardial revascularization
Any discussion of therapeutic angiogenesis should
consider the insights derived from these laser-based
revascularization approaches. Transmyocardial laser
revascularization, and the catheter-based form of the
procedure, percutaneous myocardial revascularization,
have recently been explored as potential therapeutic
options in patients with severe, refractory myocardial
ischaemia[171]. The initial rationale for the development
of these procedures was simple[172]. In transmyocardial
laser revascularization, a high energy laser is used to
surgically create 12 to 18 channels, about 2–3 mm deep
and 1 cm apart, within the myocardium[173–176]. The
intervention is intended to simulate the reptilian heart
and allow communication of oxygenated blood from the
left ventricle with myocardial sinusoids. Although the
intent is to mechanically facilitate additional blood flow
to the ischaemic myocardium, it has subsequently been
observed that the mechanical benefit may be short-lived,
because the newly created channels quickly occlude after
the procedure. The exact mechanism of long-term
benefit of these procedures, therefore, remains poorly
understood[177,178]. More recently it has been suggested
that these procedures stimulate angiogenesis by a non-
specific reaction to tissue injury[179], perhaps by inducing
an inflammatory response and the release of certain
angiogenic factors in the targeted myocardium[177].
Recent animal studies have used transmyocardial laser
revascularization in combination with vascular endo-
thelial growth factor gene therapy to elicit complete
reversal of ischaemic wall motion abnormalities in
ischaemic myocardium[180].

Regardless of the mechanism of action, the results of
initial observational studies of transmyocardial laser
revascularization have been noteworthy. Transmyocar-
dial laser revascularization was shown to reduce the
angina class in these patients, with some improvement in
their exercise tolerance[175,176,181]. The procedures were,
however, associated with substantial peri-operative mor-
tality and morbidity and with an inconclusive objective
improvement in myocardial perfusion[182]. Recent pub-
lished clinical studies demonstrated similar subjective
symptomatic relief for those patients undergoing the
procedure, with little objective evidence for such im-
provement[183,184]. The surgical procedure of trans-
myocardial laser revascularization was also associated
with a high peri-operative morbidity and mortality,
particularly among patients with depressed left ventricu-
lar ejection fractions[185]. The complication rates can
theoretically be minimized with percutaneous myocar-
dial revascularization, the percutaneous, catheter-based
form of the procedure. Another limitation in these
studies[183,184] has been the lack of placebo controls.
More research, and possibly placebo-controlled clinical
studies, will be necessary to fully evaluate the indications
for these procedures and to understand their mechanism
of action.
Summary and conclusions

Angiogenesis has generated tremendous enthusiasm for
its promise as a novel therapeutic modality for ischaemic
heart disease, especially for patients who do not have
good therapeutic alternatives. Augmentation of physio-
logical neovascularization in ischaemic cardiovascular
disease is based on an intuitively rational scientific
concept and, thus far, numerous lines of investigation
have demonstrated the validity of this concept. Despite
some mixed results, that serve, chiefly, to emphasize the
plethora of as yet unanswered questions in this young
field, there is a little doubt that stimulation of angio-
genesis by growth factors, drugs, gene therapy, or mech-
anical manipulation, will have a place in future therapy
of ischaemic heart disease. The future of therapeutic
angiogenesis will be defined through further basic re-
search into the molecular mechanisms of the cellular
response to angiogenic stimulation. In addition, well-
designed clinical studies will be required to delineate the
long-term benefits of such therapy on the morbidity and
mortality of chronic human ischaemic disease.
Eur Heart J, Vol. 22, issue 11, June 2001
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